Inhibition Of Collagen And ADP-Induced Platelet Aggregation By Plasma Fibronectin

1981 ◽  
Author(s):  
D G Moon ◽  
J E Kaplan

Platelets contain fibronectin a glycoprotein with an established affinity for collagen. This observation has led other investigators to postulate that fibronectin is the platelet collagen receptor. The much greater concentration of fibronectin in the plasma surrounding platelets, however, has led us to suggest that plasma fibronectin may bind to collagen and competitively inhibit the platelet- collagen interaction. Rat platelets were isolated by Stractan density gradient centrifugation and aggregated with acid-solubilized rat tail tendon collagen (Type I) in a Payton 300B Aggregometer. Fibronectin was twice purified by affinity chromatography with gelatin linked to CNBr- activated Sepharose 4B. Simultaneous addition of 50 μg fibronectin and 25 μg collagen to platelets suspended in Tyrodes solution at 37°C resulted in a 2-fold increase in lag time and a 30% decrease in aggregation rate as compared to control values. When collagen was preincubated in Tyrodes solution for 12 minutes at 26°C without platelets to allow for prior fibrillogenesis, the addition of 50 μg fibronectin with the platelets resulted in <20% increase in lag time and a 20-30% decrease in aggregation rate. In a separate series of experiments, fibronectin was also found to inhibit ADP-induced aggregation. In this case, the initial rate of aggregation was comparable with and without fibronectin, but this maximal rate was maintained for a shorter period in the presence of fibronectin. Thus, fibronectin reduced the in vitro aggregation response to two different physiological stimuli. Our data supports previous studies which indicate that fibronectin reduces the reactivity of platelets with collagen and provides evidence of a role for fibronectin in modulating platelet responses in the absence of collagen.

Blood ◽  
2001 ◽  
Vol 98 (4) ◽  
pp. 1038-1046 ◽  
Author(s):  
Sylvie Moog ◽  
Pierre Mangin ◽  
Nadège Lenain ◽  
Catherine Strassel ◽  
Catherine Ravanat ◽  
...  

Glycoprotein V (GPV) is a subunit of the platelet GPIb-V-IX receptor for von Willebrand factor and thrombin. GPV is cleaved from the platelet surface during activation by thrombin, but its role in hemostasis is still unknown. It is reported that GPV knockout mice had a decreased tendency to form arterial occluding thrombi in an intravital thrombosis model and abnormal platelet interaction with the subendothelium. In vitro, GPV-deficient platelets exhibited defective adhesion to a collagen type I–coated surface under flow or static conditions. Aggregation studies demonstrated a decreased response of the GPV-deficient platelets to collagen, reflected by an increased lag phase and reduced amplitude of aggregation. Responses to adenosine diphosphate, arachidonic acid, and the thromboxane analog U46619 were normal but were enhanced to low thrombin concentrations. The defect of GPV null platelets made them more sensitive to inhibition by the anti-GPVI monoclonal antibody (mAb) JAQ1, and this was also the case in aspirin- or apyrase-treated platelets. Moreover, an mAb (V.3) against the extracellular domain of human GPV selectively inhibited collagen-induced aggregation in human or rat platelets. V.3 injected in rats as a bolus decreased the ex vivo collagen aggregation response without affecting the platelet count. Finally, surface plasmon resonance studies demonstrated binding of recombinant soluble GPV on a collagen-coupled matrix. In conclusion, GPV binds to collagen and appears to be required for normal platelet responses to this agonist.


Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 473
Author(s):  
Mariagiulia Minetti ◽  
Giulia Bernardini ◽  
Manuele Biazzo ◽  
Gilles Gutierrez ◽  
Michela Geminiani ◽  
...  

Marine algae have gained much importance in the development of nutraceutical products due to their high content of bioactive compounds. In this work, we investigated the activity of Padina pavonica with the aim to demonstrate the pro-osteogenic ability of its extract on human primary osteoblast (HOb). Our data indicated that the acetonic extract of P. pavonica (EPP) is a safe product as it did not show any effect on osteoblast viability. At the same time, EPP showed to possess a beneficial effect on HOb functionality, triggering their differentiation and mineralization abilities. In particular EPP enhanced the expression of the earlier differentiation stage markers: a 5.4-fold increase in collagen type I alpha 1 chain (COL1A1), and a 2.3-fold increase in alkaline phosphatase (ALPL), as well as those involved in the late differentiation stage: a 3.7-fold increase in osteocalcin (BGLAP) expression and a 2.8-fold in osteoprotegerin (TNFRSF11B). These findings were corroborated by the enhancement in ALPL enzymatic activity (1.7-fold increase) and by the reduction of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) ratio (0.6-fold decrease). Moreover, EPP demonstrated the capacity to enhance the bone nodules formation by 3.2-fold in 4 weeks treated HOb. Therefore, EPP showed a significant capability of promoting osteoblast phenotype. Given its positive effect on bone homeostasis, EPP could be used as a useful nutraceutical product that, in addition to a healthy lifestyle and diet, can be able to contrast and prevent bone diseases, especially those connected with ageing, such as osteoporosis (OP).


2014 ◽  
Vol 96 ◽  
pp. 1-8 ◽  
Author(s):  
Pramod Kumar ◽  
Abhigyan Satyam ◽  
Diana Gaspar ◽  
Daniela Cigognini ◽  
Clara Sanz-Nogués ◽  
...  

Tissue engineering by self-assembly hypothesises that optimal repair and regeneration can be achieved best by using the cells’ inherent ability to create organs with proficiency still unmatched by currently available scaffold fabrication technologies. However, the prolonged culture time required to develop an implantable device jeopardises clinical translation and commercialisation of such techniques. Herein, we report that macromolecular crowding, a biophysical in vitro microenvironment modulator, dramatically accelerates extracellular matrix deposition in cultured human corneal, lung and dermal fibroblasts and human bone marrow mesenchymal stem cells. In fact, an almost 5 to 30 fold increase in collagen type I deposition was recorded as early as 48 hours in culture, without any negative effect in cell phenotype and function.


2021 ◽  
Vol 8 (3) ◽  
pp. 39
Author(s):  
Britani N. Blackstone ◽  
Summer C. Gallentine ◽  
Heather M. Powell

Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


Author(s):  
Michel Haagdorens ◽  
Elle Edin ◽  
Per Fagerholm ◽  
Marc Groleau ◽  
Zvi Shtein ◽  
...  

Abstract Purpose To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants Methods RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs. Results Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas. Conclusion Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method. Lay Summary A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.


2017 ◽  
Vol 312 (3) ◽  
pp. G219-G227 ◽  
Author(s):  
Leonie Beljaars ◽  
Sara Daliri ◽  
Christa Dijkhuizen ◽  
Klaas Poelstra ◽  
Reinoud Gosens

WNT-5A is a secreted growth factor that belongs to the noncanonical members of the Wingless-related MMTV-integration family. Previous studies pointed to a connection between WNT-5A and the fibrogenic factor TGF-β warranting further studies into the functional role of WNT-5A in liver fibrosis. Therefore, we studied WNT-5A expressions in mouse and human fibrotic livers and examined the relation between WNT-5A and various fibrosis-associated growth factors, cytokines, and extracellular matrix proteins. WNT-5A gene and protein expressions were significantly increased in fibrotic mouse and human livers compared with healthy livers. Regression or therapeutic intervention in mice resulted in decreased hepatic WNT-5A levels paralleled by lower collagen levels. Immunohistochemical analysis showed WNT-5A staining in fibrotic septa colocalizing with desmin staining indicating WNT-5A expression in myofibroblasts. In vitro studies confirmed WNT-5A expression in this cell type and showed that TGF-β significantly enhanced WNT-5A expression in contrast to PDGF-BB and proinflammatory cytokines IL-1β and TNF-α. Additionally, TGF-β induces the expression of the WNT receptors FZD2 and FZD8. After silencing of WNT-5A, reduced levels of collagen type I, vimentin, and fibronectin in TGF-β-stimulated myofibroblasts were measured compared with nonsilencing siRNA-treated controls. Interestingly, the antifibrotic cytokine IFNγ suppressed WNT-5A in vitro and in vivo. IFNγ-treated fibrotic mice showed significantly less WNT-5A expression compared with untreated fibrotic mice. In conclusion, WNT-5A paralleled collagen I levels in fibrotic mouse and human livers. WNT-5A expression in myofibroblasts is induced by the profibrotic factor TGF-β and plays an important role in TGF-β-induced regulation of fibrotic matrix proteins, whereas its expression can be reversed upon treatment, both in vitro and in vivo. NEW & NOTEWORTHY This study describes the localization and functional role of WNT-5A in human and mouse fibrotic livers. Hepatic WNT-5A expression parallels collagen type I expression. In vivo and in vitro, the myofibroblasts were identified as the key hepatic cells producing WNT-5A. WNT-5A is under control of TGF-β and its activities are primarily profibrotic.


Blood ◽  
1984 ◽  
Vol 64 (3) ◽  
pp. 607-613 ◽  
Author(s):  
W Nijhof ◽  
PK Wierenga ◽  
GE Staal ◽  
G Jansen

Late committed progenitor cells of erythropoiesis, CFU-E (colony- forming unit--erythroid), were isolated from mouse spleens to near homogeneity by a three-step enrichment procedure. The procedure included a four-day pretreatment of bled mice with the antibiotic thiamphenicol, a recovery period of 3 1/2 days, followed by centrifugal elutriation and Percoll density gradient centrifugation of the spleen cells. This practically pure CFU-E population was used to study some aspects of erythroid differentiation in vitro. Colony growth, as well as morphology and glycolytic enzyme activities of cells isolated at selected times of the 48-hour culture period, were determined. Marked declining activities of several enzymes, including hexokinase, phosphofructokinase, aldolase, enolase, pyruvate kinase, and glucose-6- phosphate dehydrogenase, were observed during in vitro differentiation. The activity of diphosphoglycerate mutase was almost absent in the CFU- E, but progressively increased during differentiation. The isozyme distribution of aldolase and enolase did not change during CFU-E in vitro differentiation into the reticulocyte. Hexokinase (HK) in the CFU- E contained mainly a double-banded type I isozyme, in addition to a minor amount of HK II. During differentiation, a shift was noticed within the double-banded HK I region, whereas HK ii disappeared after one cell division. Pyruvate kinase in the CFU-E was characterized by the presence of both the K-type and the L-type isozyme and hybrids of these isozyme types. During in vitro differentiation, the production of the K-type isozyme rapidly stops in favor of the L type.


Sign in / Sign up

Export Citation Format

Share Document