scholarly journals Iodonium-Catalyzed Carbonyl–Olefin Metathesis Reactions

Synlett ◽  
2019 ◽  
Vol 30 (17) ◽  
pp. 1966-1970 ◽  
Author(s):  
Giulia Oss ◽  
Thanh Vinh Nguyen

The carbonyl–olefin metathesis reaction has become increasingly important in organic synthesis due to its versatility in functional group interconversion chemistry. Recent developments in the field have identified a number of transition-metal and organic Lewis acids as effective catalysts for this reaction. Herein, we report the use of simple organic compounds such as N-iodosuccinimide or iodine monochloride to catalyze the carbonyl–olefin metathesis process under mild reaction conditions. This work broadens the scope of this chemical transformation to include iodonium sources as simple and practical catalysts.

Author(s):  
Thanh Vinh Nguyen ◽  
Uyen P. N. Tran ◽  
Giulia Oss ◽  
Martin Breugst ◽  
Eric Detmar ◽  
...  

The carbonyl-olefin metathesis reaction is a synthetically valuable transformation that could facilitate rapid functional group interconversion and construction of new organic structures. Herein we demonstrate that elemental iodine, a very simple and mild catalyst, can efficiently promote this chemical transformation under mild reaction conditions with excellent outcomes. Our mechanistic studies revealed intriguing aspects of iodine activation mode that could change the previously established perception of catalyst and substrate design for the carbonyl-olefin metathesis reaction.


2018 ◽  
Author(s):  
Thanh Vinh Nguyen ◽  
Uyen P. N. Tran ◽  
Giulia Oss ◽  
Martin Breugst ◽  
Eric Detmar ◽  
...  

The carbonyl-olefin metathesis reaction is a synthetically valuable transformation that could facilitate rapid functional group interconversion and construction of new organic structures. Herein we demonstrate that elemental iodine, a very simple and mild catalyst, can efficiently promote this chemical transformation under mild reaction conditions with excellent outcomes. Our mechanistic studies revealed intriguing aspects of iodine activation mode that could change the previously established perception of catalyst and substrate design for the carbonyl-olefin metathesis reaction.


Author(s):  
Jie Jack Li ◽  
Chris Limberakis ◽  
Derek A. Pflum

Searching for reaction in organic synthesis has been made much easier in the current age of computer databases. However, the dilemma now is which procedure one selects among the ocean of choices. Especially for novices in the laboratory, it becomes a daunting task to decide what reaction conditions to experiment with first in order to have the best chance of success. This collection intends to serve as an "older and wiser lab-mate" one could have by compiling many of the most commonly used experimental procedures in organic synthesis. With chapters that cover such topics as functional group manipulations, oxidation, reduction, and carbon-carbon bond formation, Modern Organic Synthesis in the Laboratory will be useful for both graduate students and professors in organic chemistry and medicinal chemists in the pharmaceutical and agrochemical industries.


Synlett ◽  
2020 ◽  
Author(s):  
Margaret R Jones ◽  
Nathan D. Schley

The field of catalytic C-H borylation has grown considerably since its founding, providing a means for the preparation of synthetically versatile organoborane products. While sp2 C-H borylation methods have found widespread and practical use in organic synthesis, the analogous sp3 C-H borylation reaction remains challenging and has seen limited application. Existing catalysts are often hindered by incomplete consumption of the diboron reagent, poor functional group tolerance, harsh reaction conditions, and the need for excess or neat substrate. These challenges acutely affect C-H borylation chemistry of unactivated hydrocarbon substrates, which has lagged in comparison to methods for the C-H borylation of activated compounds. Herein we discuss recent advances in sp3 C-H borylation of undirected substrates in the context of two particular challenges: (1) utilization of the diboron reagent and (2) the need for excess or neat substrate. Our recent work on the application of dipyridylarylmethane ligands in sp3 C-H borylation has allowed us to make contributions in this space and has presented an additional ligand scaffold to supplement traditional phenanthroline ligands.


2015 ◽  
Vol 11 ◽  
pp. 2038-2056 ◽  
Author(s):  
Lorenzo Piola ◽  
Fady Nahra ◽  
Steven P Nolan

Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.


Synthesis ◽  
2018 ◽  
Vol 51 (03) ◽  
pp. 612-628 ◽  
Author(s):  
Janakiram Vaitla ◽  
Annette Bayer

As pioneered by Corey and Chaykovsky, sulfoxonium ylides have had widespread application in organic synthesis for more than a half century. In most of the reactions, sulfoxonium ylides were used to react with electrophiles. Under suitable reaction conditions these ylides can generate metal carbenoids and react with nucleophiles. By combining the typical reactivity of sulfoxonium ylides with transition-metal catalysis, a growing number of investigations have expanded their application in organic synthesis. This review provides an update on the preparation of sulfoxonium ylides and their applications in carbenoid transfer reactions.1 Introduction2 Preparation of Sulfoxonium Ylides3 Investigation for Carbenoid Formation from Sulfoxonium Ylide 4 X–H (X = N, O, S, C) Functionalization Reactions5 Polymerizaton of Carbenoids Generated from Sulfoxonium Ylides6 Conclusion and Perspective


Synlett ◽  
2019 ◽  
Vol 30 (17) ◽  
pp. 1954-1965 ◽  
Author(s):  
Tristan H. Lambert

Carbonyl-olefin metathesis is a potentially powerful yet underexplored reaction in organic synthesis. In recent years, however, this situation has begun to change, most notably with the introduction of several different catalytic technologies. The development of one of those new strategies, based on hydrazine catalysts and a novel [3+2] paradigm for double bond metathesis, is discussed herein. First, the stage is set with a description of some potential applications of carbonyl-olefin metathesis and a discussion of alternative strategies for this intriguing reaction.1 Introduction2 Potential Applications of Carbonyl-Olefin Metathesis3 Carbonyl-Olefin Metathesis Strategies4 Direct (Type I): Non-Catalytic5 Direct (Type I): Acid-Catalyzed6 Indirect (Type II): Metal Alkylidenes7 Indirect (Type III): Hydrazine-Catalyzed8 Conclusion


Synlett ◽  
2017 ◽  
Vol 28 (19) ◽  
pp. 2525-2538 ◽  
Author(s):  
James Bull ◽  
Renzo Luisi ◽  
Leonardo Degennaro

Sulfoximines are emerging as valuable new isosteres for use in medicinal chemistry, with the potential to modulate physicochemical properties. Recent developments in synthetic strategies have made the unprotected ‘free’ NH-sulfoximine group more readily available, facilitating further study. This account reviews approaches to NH-sulfoximines, with a focus on our contribution to the field. Starting from the development of catalytic strategies involving transition metals, more sustainable metal-free processes have been discovered. In particular, the use of hypervalent iodine reagents to mediate NH-transfer to sulfoxides is described, along with an assessment of the substrate scope. Furthermore, a one-pot strategy to convert sulfides directly into NH-sulfoximines is discussed, with N- and O-transfer occurring under the reaction conditions. Mechanistic evidence for the new procedures is included as well as relevant synthetic applications that further exemplify the potential of these approaches.1 Introduction2 Strategies to Form NH-Sulfoximines Involving Transition-Metal Catalysts3 Metal-Free Strategies to Prepare NH-Sulfoximines4 Mechanistic Evidence for the Direct Synthesis of NH-Sulfoximines from Sulfoxides and Sulfides5 Further Applications6 Conclusion


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1082 ◽  
Author(s):  
Ilya Nifant’ev ◽  
Pavel Ivchenko

Coordination catalysis is a highly efficient alternative to more traditional acid catalysis in the oligomerization of α-olefins. The distinct advantage of transition metal-based catalysts is the structural homogeneity of the oligomers. Given the great diversity of the catalysts and option of varying the reaction conditions, a wide spectrum of processes can be implemented. In recent years, both methylenealkanes (vinylidene dimers of α-olefins) and structurally uniform oligomers with the desired degrees of polymerization have become available for later use in the synthesis of amphiphilic organic compounds and polymers, high-quality oils or lubricants, and other prospective materials. In the present review, we discussed the selective dimerization and oligomerization of α-olefins, catalyzed by metallocene and post-metallocene complexes, and explored the prospects for the further applications of the coordination α-olefin dimers and oligomers.


Sign in / Sign up

Export Citation Format

Share Document