Diethyl Phosphite Promoted Electrochemical Oxidation of Tetrahydroisoquinolines to 3,4-Dihydroisoquinolin-1(2H)-ones

Synlett ◽  
2019 ◽  
Vol 30 (18) ◽  
pp. 2077-2080
Author(s):  
Wenxia Xie ◽  
Bowen Gong ◽  
Shulin Ning ◽  
Nian Liu ◽  
Zhuoqi Zhang ◽  
...  

A diethyl phosphite mediated electrochemical oxidation strategy for the synthesis of 3,4-dihydroisoquinolin-1(2H)-ones from tetrahydroisoquinolines under mild conditions has been developed. This protocol provides an environmentally friendly and simple way for the construction of C=O bonds in an undivided cell unit.

2021 ◽  
pp. 174751982110325
Author(s):  
Yan Xiao ◽  
Jiyu Gao ◽  
Peng Chen ◽  
Guangliang Chen ◽  
Zicheng Li ◽  
...  

A series of symmetrical 1,4-disubstituted buta-1,3-diynes is prepared with excellent yields (up to 95%) through homocoupling of terminal alkynes catalyzed by a copper salt under solvent-free conditions. This method provides an environmentally friendly process to prepare 1,3-diynes in short reaction times under mild conditions. Furthermore, the method is suitable for a wide substrate scope and has excellent functional group compatibility. The reaction can also be scaled up to gram level.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5270
Author(s):  
Zhenbo Yuan ◽  
Xuanzhong Liu ◽  
Changmei Liu ◽  
Yan Zhang ◽  
Yijian Rao

Non-proteinogenic amino acids have attracted tremendous interest for their essential applications in the realm of biology and chemistry. Recently, rising C–H functionalization has been considered an alternative powerful method for the direct synthesis of non-proteinogenic amino acids. Meanwhile, photochemistry has become popular for its predominant advantages of mild conditions and conservation of energy. Therefore, C–H functionalization and photochemistry have been merged to synthesize diverse non-proteinogenic amino acids in a mild and environmentally friendly way. In this review, the recent developments in the photo-mediated C–H functionalization of proteinogenic amino acids derivatives for the rapid synthesis of versatile non-proteinogenic amino acids are presented. Moreover, postulated mechanisms are also described wherever needed.


2018 ◽  
Vol 42 (12) ◽  
pp. 614-617
Author(s):  
Soumia Belkharchach ◽  
Hanane Elayadi ◽  
Hana Ighachane ◽  
Said Sebti ◽  
Mustapha Ait Ali ◽  
...  

2-Substituted benzimidazoles are selectively synthesised in high yields via the condensation of o-phenylenediamine derivatives with aldehyde derivatives using catalytic amount of p-toluenesulfonic acid coated natural phosphate (NP/PTSA) under mild conditions. The use of NP/PTSA as a reusable catalyst makes this process simple, convenient, and environmentally friendly.


2017 ◽  
Vol 114 ◽  
pp. 113-121 ◽  
Author(s):  
Glen Andrew de Vera ◽  
Wolfgang Gernjak ◽  
Jelena Radjenovic

Synlett ◽  
2019 ◽  
Vol 30 (12) ◽  
pp. 1437-1441
Author(s):  
Xu yan Cao ◽  
Fei Huang ◽  
Songlin Zhang

The first example of carbon double-bond formation via praseodymium-mediated Barbier type reaction of ketones and allyl halides in the presence of diethyl phosphite is reported. The reaction is highly α-regioselective and conveniently carried out under mild conditions in a one-pot fashion. From a synthetic point of view, a series of conjugated alkenes were obtained in moderate to good yields in this one-pot reaction with practical reaction conditions.


Synthesis ◽  
2020 ◽  
Vol 52 (22) ◽  
pp. 3446-3451
Author(s):  
Songlin Zhang ◽  
Dengbing Xie ◽  
Yiqiong Wang ◽  
Bo Yang

The carbon–carbon double bond formation via neodymium-mediated Barbier-type reaction of ketones and allyl halides in the presence of diethyl phosphite is reported for the first time. The reaction is highly α-regioselective and was conveniently carried out under mild conditions in a one-pot fashion. From a synthetic point of view, a series of conjugated alkenes were obtained in moderate to good yields in this one-pot reaction with feasible reaction conditions.


2015 ◽  
Vol 8 ◽  
pp. e31-e36 ◽  
Author(s):  
Dayanne Chianca de Moura ◽  
Chrystiane do Nascimento Brito ◽  
Marco Antonio Quiroz ◽  
Sibele B.C. Pergher ◽  
Carlos A. Martinez-Huitle

Sign in / Sign up

Export Citation Format

Share Document