Effects of Ischemic Preconditioning and C1 Esterase Inhibitor Administration following Ischemia-Reperfusion Injury in a Rat Skin Flap Model

Author(s):  
Inmaculada Masa ◽  
César Casado-Sánchez ◽  
Vicente Crespo-Lora ◽  
Alberto Ballestín

Abstract Background Ischemia-reperfusion (I/R) injury is a serious condition that can affect the success rate of microsurgical reconstructions of ischemic amputated limbs and complex tissue defects requiring free tissue transfers. The purpose of this study was to evaluate the effects of ischemic preconditioning (IPC) and C1 esterase inhibitor (C1-Inh) intravenous administration following I/R injury in a rat skin flap model. Methods Superficial caudal epigastric skin flaps (3 cm × 7 cm) were performed on 50 Wistar rats that were randomly divided into five groups. Ischemia was not induced in the control group. All other flaps underwent 8 hours of ischemia prior to revascularization: I/R control group (8-hour ischemia), IPC group (preconditioning protocol + 8-hour ischemia), C1-Inh group (8-hour ischemia + C1-Inh), and IPC + C1-Inh group (preconditioning protocol + 8-hour ischemia + C1-Inh). Survival areas were macroscopically assessed after 1 week of surgery, and histopathological and biochemical evaluations were also measured. Results There were no significant differences in flap survival between the treatment groups that were suffering 8 hours of ischemia and the control group. A significant increase in neovascularization and lower edema formation were observed in the IPC group compared with that in the I/R group. Biochemical parameters did not show any significant differences. Conclusion Intravenous administration of C1-Inh did not significantly modulate I/R-related damage in this experimental model, but further research is needed. On the other hand, IPC reduces tissue damage and improves neovascularization, confirming its potential protective effects in skin flaps following I/R injury.

2004 ◽  
Vol 287 (4) ◽  
pp. H1786-H1791 ◽  
Author(s):  
Shinji Okubo ◽  
Yujirou Tanabe ◽  
Kenji Takeda ◽  
Michihiko Kitayama ◽  
Seiyu Kanemitsu ◽  
...  

We examined whether ischemic preconditioning (IPC) attenuates ischemia-reperfusion injury, in part, by decreasing apoptosis and whether the δ-opioid receptor (DOR) plays a pivotal role in the regulation of apoptosis. Rabbits were subjected to 30-min coronary artery occlusion (CAO) and 180 min of reperfusion. IPC was elicited with four cycles of 5-min ischemia and 10-min reperfusion before CAO. Morphine (0.3 mg/kg iv) was given 15 min before CAO. Naloxone (Nal; 10 mg/kg iv) and naltrindole (Nti; 10 mg/kg iv), the respective nonselective and selective DOR antagonists were given 10 min before either morphine or IPC. Infarct size (%risk area) was reduced from 46 ± 3.8 in control to 11.6 ± 1.0 in IPC and 19.5 ± 3.8 in the morphine group (means ± SE; P < 0.001 vs. control). Nal blocked the protective effects of IPC and morphine, as shown by the increase in infarct size to 38.6 ± 7.2 and 44.5 ± 1.8, respectively. Similarly, Nti blocked IPC and morphine-induced protection. The percentage of apoptotic cells (revealed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay) decreased in IPC (3.6 ± 1.9) and morphine groups (5.2 ± 1.2) compared with control group (12.4 ± 1.6; P < 0.001). Nti pretreatment increased apoptotic cells 11.2 ± 2.2% in IPC and 12.1 ± 0.8% in morphine groups. Nal failed to block inhibition of apoptosis in the IPC group (% of cells: 5.7 ± 1.3 vs. 3.6 ± 1.9 in IPC alone; P > 0.05). These results were also confirmed by nucleosomal DNA laddering pattern. We conclude that IPC reduces lethal injury, in part, by decreasing apoptosis after ischemia-reperfusion and activation of the DOR may play a crucial role in IPC or morphine-induced myocardial protection.


2019 ◽  
Vol 15 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Edmund Huang ◽  
Ashley Vo ◽  
Jua Choi ◽  
Noriko Ammerman ◽  
Kathlyn Lim ◽  
...  

Background and objectivesDelayed graft function is related to ischemia-reperfusion injury and may be complement dependent. We previously reported from a randomized, placebo-controlled trial that treatment with C1 esterase inhibitor was associated with a shorter duration of delayed graft function and higher eGFR at 1 year. Here, we report longer-term outcomes from this trial.Design, setting, participants, & measurementsThis is a post hoc analysis of a phase 1/2, randomized, controlled trial enrolling 70 recipients of deceased donor kidney transplants at risk for delayed graft function (NCT02134314). Subjects were randomized to receive C1 esterase inhibitor 50 U/kg (n=35) or placebo (n=35) intraoperatively and at 24 hours. The cumulative incidence functions method was used to compare graft failure and death over 3.5 years. eGFR slopes were compared using a linear mixed effects model.ResultsThree deaths occurred among C1 esterase inhibitor–treated patients compared with none receiving placebo. Seven graft failures developed in the placebo group compared with one among C1 esterase inhibitor–treated recipients; the cumulative incidence of graft failure was lower over 3.5 years among C1 esterase inhibitor–treated recipients compared with placebo (P=0.03). Although no difference in eGFR slopes was observed between groups (P for group-time interaction =0.12), eGFR declined in placebo-treated recipients (−4 ml/min per 1.73 m2 per year; 95% confidence interval, −8 to −0.1) but was stable in C1 esterase inhibitor–treated patients (eGFR slope: 0.5 ml/min per 1.73 m2 per year; 95% confidence interval, −4 to 5). At 3.5 years, eGFR was 56 ml/min per 1.73 m2 (95% confidence interval, 42 to 70) in the C1 esterase inhibitor group versus 35 ml/min per 1.73 m2 (95% confidence interval, 21 to 48) in the placebo group, with an estimated mean eGFR difference of 21 ml/min per 1.73 m2 (95% confidence interval, 2 to 41 ml/min per 1.73 m2).ConclusionsTreatment of patients at risk for ischemia-reperfusion injury and delayed graft function with C1 esterase inhibitor was associated with a lower incidence of graft failure.


Microsurgery ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 142-147 ◽  
Author(s):  
C.Anton Fries ◽  
Carole Y. Villamaria ◽  
Jerry R. Spencer ◽  
Todd E. Rasmussen ◽  
Michael R. Davis

1998 ◽  
Vol 80 (2) ◽  
pp. 200-204 ◽  
Author(s):  
Koichi Ueda ◽  
Masumi Nozawa ◽  
Masayuki Miyasaka ◽  
Jun Akamatsu ◽  
Sadao Tajima

2011 ◽  
pp. 271-279 ◽  
Author(s):  
Y.-N. WU ◽  
H. YU ◽  
X.-H. ZHU ◽  
H.-J. YUAN ◽  
Y. KANG ◽  
...  

We previously demonstrated in rats that noninvasive delayed limb ischemic preconditioning (LIPC) induced by three cycles of 5-min occlusion and 5-min reperfusion of the left hind limb per day for three days confers the same cardioprotective effect as local ischemic preconditioning of the heart, but the mechanism has not been studied in depth. The aim of this project was to test the hypothesis that delayed LIPC enhances myocardial antioxidative ability during ischemia-reperfusion by a mitochondrial KATP channel (mito KATP)-dependent mechanism. Rats were randomized to five groups: ischemia-reperfusion (IR)-control group, myocardial ischemic preconditioning (MIPC) group, LIPC group, IR-5HD group and LIPC-5HD group. The MIPC group underwent local ischemic preconditioning induced by three cycles of 5-min occlusion and 5-min reperfusion of the left anterior descending coronary arteries. The LIPC and LIPC-5HD groups underwent LIPC induced by three cycles of 5-min occlusion and 5-min reperfusion of the left hind limb using a modified blood pressure aerocyst per day for three days. All rats were subjected to myocardial ischemia-reperfusion injury. The IR-5HD and LIPC-5HD groups received the mito KATP channel blocker 5-hydroxydecanoate Na (5-HD) before and during the myocardial ischemia-reperfusion injury. Compared with the IR-control group, both the LIPC and MIPC groups showed an amelioration of ventricular arrhythmia, reduced myocardial infarct size, increased activities of total superoxide dismutase, manganese-superoxide dismutase (Mn-SOD) and glutathione peroxidase, increased expression of Mn-SOD mRNA and decreased xanthine oxidase activity and malondialdehyde concentration. These beneficial effects of LIPC were prevented by 5-HD. In conclusion, delayed LIPC offers similar cardioprotection as local IPC. These results support the hypothesis that the activation of mito KATP channels enhances myocardial antioxidative ability during ischemia-reperfusion, thereby contributing, at least in part, to the anti-arrhythmic and anti-infarct effects of delayed LIPC.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Dan Shan ◽  
Yan Zhang ◽  
Rui-ping Xiao

Introduction: Ischemic heart disease is the leading cause of morbidity and mortality worldwide. Ischemic preconditioning (IPC) is the most powerful intrinsic protection against cardiac ischemia/reperfusion (I/R) injury. Previous studies have shown that a multifunctional TRIM family protein, MG53 (or TRIM72), not only plays an essential role in IPC-mediated cardioprotection, but also as a myokine/cardiokine, can be secreted from the heart and skeletal muscle in response to metabolic stress in addition to its intracellular actions. Hypothesis: We hypothesized that IPC-mediated cardioprotection is causally related to MG53 secretion and figured out the underlying mechanism. Methods and Results: Using proteomic analysis in conjunction with genetic and pharmacological approaches, we examined MG53 secretion in response to IPC and explored the underlying mechanism using rodents in in vivo , isolated perfused hearts, and cultured neonatal rat ventricular cardiomyocytes. IPC profoundly increased perfusate MG53 levels in mouse hearts by 5.50 ± 0.32 and 4.26 ± 0.40 folds from baseline over 0-60 and 60-120 min of reperfusion, respectively. Mechanistically, IPC-induced MG53 secretion is dependent on H 2 O 2 -evoked, Src-mediated phosphorylation of PKC-δ-Y311. Functionally, systemic delivery of recombinant human MG53 proteins (rhMG53) to mimic elevated circulating MG53 not only restored IPC function in MG53-deficient mice, but also protected rodent hearts from I/R injury even in the absence of IPC. Treatment of rhMG53 overtly decreased the infarct size (IF/AAR) induced by I/R compared to the BSA-treated control group (11.9 ± 1.8% vs 27.3 ± 2.0%, P <0.01), and reduced the mortality from 44.7% to 5.3% in rats. Moreover, H 2 O 2 augmented MG53 secretion, and MG53 knockdown exacerbated H 2 O 2 -induced cell injury in human embryonic stem cell-derived cardiomyocytes. Conclusions: In conclusion, IPC and oxidative stress can trigger MG53 secretion from the heart via an H 2 O 2 -PKC-δ-dependent mechanism, and secreted MG53 acts as an essential factor conveying IPC-induced cardioprotection against ischemia/reperfusion injury. Recombinant MG53 proteins can be developed into a novel treatment for various diseases of human heart in which the endogenous MG53 is low.


Sign in / Sign up

Export Citation Format

Share Document