Principles of Neural Repair and Their Application to Stroke Recovery Trials

2021 ◽  
Author(s):  
David J. Lin ◽  
Steven C. Cramer

AbstractNeural repair is the underlying therapeutic strategy for many treatments currently under investigation to improve recovery after stroke. Repair-based therapies are distinct from acute stroke strategies: instead of salvaging threatened brain tissue, the goal is to improve behavioral outcomes on the basis of experience-dependent brain plasticity. Furthermore, timing, concomitant behavioral experiences, modality specific outcome measures, and careful patient selection are fundamental concepts for stroke recovery trials that can be deduced from principles of neural repair. Here we discuss core principles of neural repair and their implications for stroke recovery trials, highlighting related issues from key studies in humans. Research suggests a future in which neural repair therapies are personalized based on measures of brain structure and function, genetics, and lifestyle factors.

Author(s):  
Κατερίνα Μανιαδάκη

The aim of this paper is to provide evidence regarding the necessity and the effectiveness of early intervention for ADHD, by reviewing the most important international early intervention programs for ADHD and by presenting a relevant program implemented in Greece, based on the multi-level approach in developmental psychopathology. These programs are underpinned theoretically by the biopsychosocial epigenetic model which claims that ADHD is not just the outcome of structural and functional neurobiological deficits but results from the dynamic interplay among genetic, neurophysiological, neurochemical, and environmental factors, affecting brain structure and function early in the process of development. Early intervention focuses on those processes that take place very early in development and have a causal relationship with ADHD, with the aim of modifying the underlying neurophysiology and producing generalized long-lasting change. The efficacy of early intervention mainly lies in the fact that it takes place during a period when brain plasticity is great. Plasticity is an intrinsic property of the brain that ensures dynamic modifications at multiple levels of neural organization, allowing the brain to process, encode, and implement new knowledge. Although this neuronal development is to a great extent genetically programmed, it is widely acknowledged that environment also plays a major role through the process of epigenesis by moderating gene expression with subsequent alterations in brain structure and function and allowing even modification of certain deficient structures.


2021 ◽  
Vol 22 (13) ◽  
pp. 6814
Author(s):  
Anna Domaszewska-Szostek ◽  
Monika Puzianowska-Kuźnicka ◽  
Alina Kuryłowicz

Skin aging is associated with the accumulation of senescent cells and is related to many pathological changes, including decreased protection against pathogens, increased susceptibility to irritation, delayed wound healing, and increased cancer susceptibility. Senescent cells secrete a specific set of pro-inflammatory mediators, referred to as a senescence-associated secretory phenotype (SASP), which can cause profound changes in tissue structure and function. Thus, drugs that selectively eliminate senescent cells (senolytics) or neutralize SASP (senostatics) represent an attractive therapeutic strategy for age-associated skin deterioration. There is growing evidence that plant-derived compounds (flavonoids) can slow down or even prevent aging-associated deterioration of skin appearance and function by targeting cellular pathways crucial for regulating cellular senescence and SASP. This review summarizes the senostatic and senolytic potential of flavonoids in the context of preventing skin aging.


2017 ◽  
Vol 49 (5S) ◽  
pp. 824 ◽  
Author(s):  
X. r. Tan ◽  
Ivan C. C. Low ◽  
Mary C. Stephenson ◽  
T. Kok ◽  
Heinrich W. Nolte ◽  
...  

2011 ◽  
Vol 32 (6) ◽  
pp. 814-822 ◽  
Author(s):  
Linda L. Chao ◽  
Linda Abadjian ◽  
Jennifer Hlavin ◽  
Deiter J. Meyerhoff ◽  
Michael W. Weiner

1997 ◽  
Vol 820 (1 Imaging Brain) ◽  
pp. 139-148 ◽  
Author(s):  
G. ALLAN JOHNSON ◽  
HELENE BENVENISTE ◽  
ROBERT T. ENGELHARDT ◽  
HUI QIU ◽  
LAURENCE W. HEDLUND

NeuroImage ◽  
2014 ◽  
Vol 89 ◽  
pp. 81-91 ◽  
Author(s):  
Silke Matura ◽  
David Prvulovic ◽  
Alina Jurcoane ◽  
Daniel Hartmann ◽  
Julia Miller ◽  
...  

2018 ◽  
Vol 50 (3) ◽  
pp. 2201-2210 ◽  
Author(s):  
Zhujing Shen ◽  
Peiyu Huang ◽  
Chao Wang ◽  
Wei Qian ◽  
Xiao Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document