Ankle Joint Control in People with Chronic Ankle Instability During Run-and-cut Movements

2018 ◽  
Vol 39 (11) ◽  
pp. 853-859 ◽  
Author(s):  
Patrick Fuerst ◽  
Albert Gollhofer ◽  
Heinz Lohrer ◽  
Dominic Gehring

AbstractDespite a considerable amount of research, the deficits causing recurrent sprains in people with chronic ankle instability are still unclear. Changes in frontal plane kinematics and decreased peroneal activation have been proposed as potential underlying mechanisms, but whether people with ankle instability show deficits in control of injury-relevant movements is not well understood. Therefore, the purpose of the present study was to analyse ankle joint kinematics and kinetics as well as neuromuscular activation during dynamic change-of-direction movements. Eighteen participants with functional instability, 18 participants with functional and mechanical instability and 18 healthy controls performed 45° sidestep-cutting and 180° turning movements in reaction to light signals. During sidestep-cutting both instability groups displayed significantly lower inversion angles than controls when the trials with the highest maximum inversion angle of each participant were compared. In turning movements, participants with functional instability presented significantly lower average maximum inversion angles than controls as well as higher peroneal activation before foot strike than participants with both functional and mechanical instability. We theorize that the observed changes in movement kinematics of participants with chronic ankle instability are the result of a protective strategy to limit frontal plane ankle joint loading in potentially harmful situations.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Patrick Fuerst ◽  
Albert Gollhofer ◽  
Markus Wenning ◽  
Dominic Gehring

Abstract Background The application of ankle braces is an effective method for the prevention of recurrent ankle sprains. It has been proposed that the reduction of injury rates is based on the mechanical stiffness of the brace and on beneficial effects on proprioception and neuromuscular activation. Yet, how the neuromuscular system responds to the application of various types of ankle braces during highly dynamic injury-relevant movements is not well understood. Enhanced stability of the ankle joint seems especially important for people with chronic ankle instability. We therefore aimed to analyse the effects of a soft and a semi-rigid ankle brace on the execution of highly dynamic 180° turning movements in participants with and without chronic ankle instability. Methods Fifteen participants with functional ankle instability, 15 participants with functional and mechanical ankle instability and 15 healthy controls performed 180° turning movements in reaction to light signals in a cross-sectional descriptive laboratory study. Ankle joint kinematics and kinetics as well as neuromuscular activation of muscles surrounding the ankle joint were determined. Two-way repeated measures analyses of variance and post-hoc t-tests were calculated. Results Maximum ankle inversion angles and velocities were significantly reduced with the semi-rigid brace in comparison to the conditions without a brace and with the soft brace (p ≤ 0.006, d ≥ 0.303). Effect sizes of these reductions were larger in participants with chronic ankle instability than in healthy controls. Furthermore, peroneal activation levels decreased significantly with the semi-rigid brace in the 100 ms before and after ground contact. No statistically significant brace by group effects were found. Conclusions Based on these findings, we argue that people with ankle instability in particular seem to benefit from a semi-rigid ankle brace, which allows them to keep ankle inversion angles in a range that is comparable to values of healthy people. Lower ankle inversion angles and velocities with a semi-rigid brace may explain reduced injury incidences with brace application. The lack of effect of the soft brace indicates that the primary mechanism behind the reduction of inversion angles and velocities is the mechanical resistance of the brace in the frontal plane.


2020 ◽  
Vol 29 (2) ◽  
pp. 162-167
Author(s):  
Roel De Ridder ◽  
Tine Willems ◽  
Jos Vanrenterghem ◽  
Ruth Verrelst ◽  
Cedric De Blaiser ◽  
...  

Context: Although taping has been proven effective in reducing ankle sprain events in individuals with chronic ankle instability, insight into the precise working mechanism remains limited. Objectives: To evaluate whether the use of taping changes ankle joint kinematics during a sagittal and frontal plane landing task in subjects with chronic ankle instability. Design: Repeated measure design. Setting: Laboratory setting. Participants: A total of 28 participants with chronic ankle instability performed a forward and side jump landing task in a nontaped and taped condition. The taping procedure consisted of a double “figure of 6” and a medial heel lock. Main Outcome Measures: 3D ankle joint kinematics was registered. Statistical parametric mapping was used to assess taping effect on mean ankle joint angles and angular velocity over the landing phase. Results: For both the forward and side jump, a less plantar flexed and a less inverted position of the ankle joint were found in the preparatory phase till around touchdown (TD) in the taped condition (P < .05). In addition, for both jump landing protocols, a decreased dorsiflexion angular velocity was found after TD (P < .05). During the side jump protocol, a brief period of increased inversion angular velocity was registered after TD (P < .05). Conclusions: Taping is capable of altering ankle joint kinematics prior to TD, placing the ankle joint in a less vulnerable position at TD.


2011 ◽  
Vol 46 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Claire E. Hiller ◽  
Sharon L. Kilbreath ◽  
Kathryn M. Refshauge

Abstract Context: The Hertel model of chronic ankle instability (CAI) is commonly used in research but may not be sufficiently comprehensive. Mechanical instability and functional instability are considered part of a continuum, and recurrent sprain occurs when both conditions are present. A modification of the Hertel model is proposed whereby these 3 components can exist independently or in combination. Objective: To examine the fit of data from people with CAI to 2 CAI models and to explore whether the different subgroups display impairments when compared with a control group. Design: Cross-sectional study. Patients or Other Participants: Community-dwelling adults and adolescent dancers were recruited: 137 ankles with ankle sprain for objective 1 and 81 with CAI and 43 controls for objective 2. Intervention(s): Two balance tasks and time to recover from an inversion perturbation were assessed to determine if the subgroups demonstrated impairments when compared with a control group (objective 2). Main Outcome Measure(s): For objective 1 (fit to the 2 models), outcomes were Cumberland Ankle Instability Tool score, anterior drawer test results, and number of sprains. For objective 2, outcomes were 2 balance tasks (number of foot lifts in 30 seconds, ability to balance on the ball of the foot) and time to recover from an inversion perturbation. The Cohen d was calculated to compare each subgroup with the control group. Results: A total of 56.5% of ankles (n = 61) fit the Hertel model, whereas all ankles (n = 108) fit the proposed model. In the proposed model, 42.6% of ankles were classified as perceived instability, 30.5% as recurrent sprain and perceived instability, and 26.9% as among the remaining groups. All CAI subgroups performed more poorly on the balance and inversion-perturbation tasks than the control group. Subgroups with perceived instability had greater impairment in single-leg stance, whereas participants with recurrent sprain performed more poorly than the other subgroups when balancing on the ball of the foot. Only individuals with hypomobility appeared unimpaired when recovering from an inversion perturbation. Conclusions: The new model of CAI is supported by the available data. Perceived instability alone and in combination characterized the majority of participants. Several impairments distinguished the sprain groups from the control group.


2021 ◽  
Vol 29 (1) ◽  
pp. 230949902098457
Author(s):  
Chengjie Yuan ◽  
Genrui Zhu ◽  
Zhifeng Wang ◽  
Chen Wang ◽  
Xu Wang ◽  
...  

Purpose: This study aimed to use MRI to evaluate the fibula and talus position difference in functional and mechanical ankle stability patients. Methods: 61 and 68 patients with functional and mechanical instability, and 60 healthy volunteers were involved. Based on the axial MRI images, the rotation of the talus was identified through the Malleolar Talus Index (MTI). The position relative to the talus (Axial Malleolar Index, AMI) and medial malleolus (Intermalleolar Index, IMI) were used to evaluated the displacement of the fibula. Results: Post hoc analysis showed that the values of malleolar talus index was significantly larger among mechanical instability (89.18° ± 2.31°) than that in functional instability patients (86.55° ±61.65°, P < 0.001) and healthy volunteers (85.59° ± 2.42°, P < 0.001). The axial malleolar index of the mechanical instability patients (11.39° ± 1.41°) were significantly larger than healthy volunteers (7.91° ± 0.83°) (P < 0.0001). There were no statistically significant differences in the above three indexes between the functional instability patients and healthy volunteers. Conclusion: The functional instability patients didn’t have a posteriorly positioned fibula and an internally rotated talus. The malleolar talus index was significantly larger among mechanical instability patients than that in functional instability patients. Increased malleolar talus index may become a new indirect MRI sign for identifying functional and mechanical instability patients.


Author(s):  
M. Spencer Cain ◽  
Kyeongtak Song ◽  
J. Troy Blackburn ◽  
Kimmery Migel ◽  
Erik A. Wikstrom

Ankle joint mobilization has been shown to be effective at improving outcomes in those with chronic ankle instability (CAI), but the neuromuscular mechanisms are still unknown. We aimed to determine the immediate effect of a single Grade III anterior-to-posterior ankle joint mobilization bout on ankle musculotendinous stiffness (MTS) in those with CAI. Seventeen CAI participants had plantar flexor and fibularis MTS assessed before and after a 5-min joint mobilization treatment. MTS outcomes were estimated using the damped oscillation method. Fibularis (0.25 ± 0.41 N/m/kg, p = .028) but not plantar flexor MTS (−2.18 ± 14.35 N/m/kg, p = .539) changed following mobilization and exceeded the calculated minimal detectable change score (0.12 N/m/kg). Increased fibularis MTS may represent a neuromuscular mechanism by which ankle joint mobilizations improve postural control in those with CAI.


2021 ◽  
pp. 194173812110357
Author(s):  
Hong-Wen Wu ◽  
Yi-Shuo Chang ◽  
Md Samsul Arefin ◽  
Yu-Lin You ◽  
Fong-Chin Su ◽  
...  

Background: Remodeled bicycle pedal training with multidirectional challenges through muscle strengthening and neuromuscular facilitation may increase dynamic postural control and performance during lateral shuffling for athletes with functional ankle instability (FAI). Hypothesis: The 6-week remodeled bicycle pedal training is effective on the ankle joint control and muscle activation, and especially that of the ankle evertor muscle co-contraction to improve dynamic postural control during lateral shuffling for athletes with FAI. Study Design: Laboratory randomized controlled trial. Level of Evidence: Level 2. Methods: Fourteen healthy athletes (healthy group) and 26 athletes with FAI aged 18 to 30 years were included in the study. The athletes with FAI were randomly assigned to either the training group (FAI-T group) or the nontraining group (FAI-NT group). The athletes in the FAI-T group underwent 6 weeks of remodeled bicycle pedal training, whereas those in the FAI-NT group did not undergo any intervention. Muscle co-contraction index and muscle activation in the initial contact (IC) and propulsion phases, and ankle joint angle in the IC and propulsion phases were measured during lateral shuffling before and after 6 weeks of training. Results: After remodeled bicycle pedal training, the FAI-T group demonstrated greater muscle activation in the hamstring ( P = 0.01), greater muscle coactivation of the tibialis anterior (TA) and the peroneus longus ( P = 0.01), and greater ankle eversion angle in the IC phase. Significantly greater muscle activation of the TA ( P = 0.01), greater coactivation of quadriceps and hamstring ( P = 0.03), and a smaller ankle inversion angle ( P = 0.04) in the propulsion phase were observed in the FAI-T group after training compared with those in the FAI-NT group. Conclusion: Remodeled bicycle pedal training facilitates the TA and peroneus longus activation and the coactivation of the quadriceps and hamstring muscles during lateral shuffling and resulted in enhanced ankle and knee joint stability. In addition, a better ankle movement strategy during a dynamic task can be achieved via a 6-week remodeled pedal training program. Clinical Relevance: This remodeled bicycle pedal training can be effective for rehabilitating athletes with FAI to recover lateral dynamic movement capability.


Sign in / Sign up

Export Citation Format

Share Document