Cellular Effects of Factor Xa on Vascular Smooth Muscle Cells-Inhibition by Heparins?

2001 ◽  
Vol 27 (05) ◽  
pp. 489-494 ◽  
Author(s):  
Ellen Bretschneider ◽  
Karsten Schrör
1998 ◽  
Vol 120 (4) ◽  
pp. 484-490 ◽  
Author(s):  
C. L. Hall ◽  
M. B. Taubman ◽  
Y. Nemerson ◽  
V. T. Turitto

The purpose of the present investigation was to explore the effects of well-defined flow conditions on the activity of tissue factor (TF) expressed on the surface of cultured rat vascular smooth muscle cells. Cells were cultured to confluence on Permanox brand slides and stimulated to express TF by a 90 min incubation with fresh growth medium containing 10 percent calf serum. The stimulated cells were then placed in a parallel plate flow chamber and perfused with Hank’s Balanced Salt Solution containing factor VIIa, factor X (FX), and calcium. The chamber effluent was collected and assayed for factor Xa (FXa) and the steady-state flux of FXa was calculated. The flux values were 68.73, 94.81, 139.75, 138.19, 316.82, and 592.92 fmole/min/cm2 at wall shear rates of 10, 20, 40, 80, 320, and 1280 s−1 respectively. The FXa flux depended on the wall shear rate to a greater degree than predicted by classical mass transport theory. The flux at each shear rate was three to five times less than that calculated according to the Leveque solution. These features of the experimental data imply nonclassical behavior, which may partially result from a direct effect of flow on the cell layer.


2019 ◽  
Vol 20 (12) ◽  
pp. 2902 ◽  
Author(s):  
Omana P. Mathew ◽  
Kasturi Ranganna ◽  
Joseph Mathew ◽  
Meiling Zhu ◽  
Zivar Yousefipour ◽  
...  

Vascular remodeling is a characteristic feature of cardiovascular diseases. Altered cellular processes of vascular smooth muscle cells (VSMCs) is a crucial component in vascular remodeling. Histone deacetylase inhibitor (HDACI), butyrate, arrests VSMC proliferation and promotes cell growth. The objective of the study is to determine the mechanism of butyrate-induced VSMC growth. Using proliferating VSMCs exposed to 5 mM butyrate, immunoblotting studies are performed to determine whether PI3K/Akt pathway that regulates different cellular effects is a target of butyrate-induced VSMC growth. Butyrate inhibits phosphorylation-dependent activation of PI3K, PDK1, and Akt, eliciting differential effects on downstream targets of Akt. Along with previously reported Ser9 phosphorylation-mediated GSK3 inactivation leading to stability, increased expression and accumulation of cyclin D1, and epigenetic histone modifications, inactivation of Akt by butyrate results in: transcriptional activation of FOXO1 and FOXO3 promoting G1 arrest through p21Cip1/Waf1 and p15INK4B upregulation; inactivation of mTOR inhibiting activation of its targets p70S6K and 4E-BP1 impeding protein synthesis; inhibition of caspase 3 cleavage and downregulation of PARP preventing apoptosis. Our findings imply butyrate abrogates Akt activation, causing differential effects on Akt targets promoting convergence of cross-talk between their complimentary actions leading to VSMC growth by arresting proliferation and inhibiting apoptosis through its effect on dual targets, HDAC activity and PI3K/Akt pathway network.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yanpeng Ma ◽  
Yong Zhang ◽  
Chuan Qiu ◽  
Chunhui He ◽  
Ting He ◽  
...  

Background: Factor Xa (FXa) is a mediator initiating and accelerating atherosclerosis (AS). Both macrophage and vascular smooth muscle cells (VSMCs) participate in AS progression. This study was aimed to investigate the mechanisms underlying the effects of the FXa inhibitor rivaroxaban on AS.Methods: Rivaroxaban was administered to AS mice. Primary macrophages were exposed to FXa, treated with rivaroxaban, and transfected with siRNA silencing protease-activated receptor 2 (PAR2), hypoxia-inducible factor 1α (HIF1α), delta-like receptor 4 (Dll4), and Akt. Interaction between macrophages and VSMCs was assessed by co-culturing systems. Atherosclerotic lesions were evaluated by oil red O stain. Fluorescent staining was used to determine the cell phenotypes. Secretions of inflammatory cytokines and collagen were assessed by ELISA and Sircol assays. Western blotting was used to evaluate the protein expression and phosphorylation levels.Results: Rivaroxaban reduced lesion area, accumulation of M1 macrophages, and contractile-synthetic phenotypic conversion of VSMCs in atherosclerotic plaques. FXa exposure induced polarization of macrophages toward M1 and Dll4 high expression, which were inhibited by PAR2, Akt1, and HIF1α silencing. Rivaroxaban treatment inhibited PAR2/Akt/HIF1α signaling activation and Dll4 expression in FXa-exposed macrophages. By cell-to-cell contact, M1 macrophages induced Notch signaling activation in VSMCs which committed contractile-synthetic conversion. Rivaroxaban treatment and Dll4 silencing incapacitated macrophage in inducing phenotypic conversion of VSMCs upon cell-to-cell contact.Conclusion: Rivaroxaban suppresses AS by inhibiting FXa-induced PAR2/Akt/HIF1α signaling activation-mediated macrophage M1 polarization and high Dll4 expression. These macrophages facilitated VSMCs to perform contractile-synthetic phenotypic conversion upon macrophage-VSMCs cell-to-cell contact.


Sign in / Sign up

Export Citation Format

Share Document