scholarly journals Perceptions of stereotypes applied to women who publicly communicate their STEM work

Author(s):  
Merryn McKinnon ◽  
Christine O’Connell

AbstractGender biases and stereotypes are prevalent in science, technology, engineering and mathematics (STEM) fields, which can create obstacles for the attraction, retention and progression of girls and women to STEM studies and careers. There are many initiatives which are used to attempt to address these biases and stereotypes, including the use of visible role models. This study explores the perceptions of the stereotypes applied to female STEM professionals who publicly speak about their work in both academic and non-academic settings. Using workshops with over 300 participants, predominantly female STEM professionals, from over 25 different cultural backgrounds, the results showed women who publicly communicate their work are likely to be stereotyped as ‘bitchy’, ‘bossy’, and ‘emotional’—often by their own gender. These findings suggest that women may be in a more vulnerable position when communicating publicly about their work, which could have implications for them participating fully in their careers. It may also have implications for programs which use role models to address prevailing STEM stereotypes. Systematic cultural and institutional change is needed in STEM fields to address the underlying bias and negative stereotypes facing women. However, it should be ensured that the intended solutions to facilitate this change are not compounding the problem.

2011 ◽  
Vol 2 (6) ◽  
pp. 656-664 ◽  
Author(s):  
Sapna Cheryan ◽  
John Oliver Siy ◽  
Marissa Vichayapai ◽  
Benjamin J. Drury ◽  
Saenam Kim

Women who have not yet entered science, technology, engineering, and mathematics (STEM) fields underestimate how well they will perform in those fields (e.g., Correll, 2001 ; Meece, Parsons, Kaczala, & Goff, 1982). It is commonly assumed that female role models improve women’s beliefs that they can be successful in STEM. The current work tests this assumption. Two experiments varied role model gender and whether role models embody computer science stereotypes. Role model gender had no effect on success beliefs. However, women who interacted with nonstereotypical role models believed they would be more successful in computer science than those who interacted with stereotypical role models. Differences in women’s success beliefs were mediated by their perceived dissimilarity from stereotypical role models. When attempting to convey to women that they can be successful in STEM fields, role model gender may be less important than the extent to which role models embody current STEM stereotypes.


2020 ◽  
Vol 6 (3) ◽  
pp. 230-234
Author(s):  
Sadia Sajid ◽  
M Sultana Alam ◽  
Jin Kuan Kok ◽  
Mobashar Rehman

Globally, women are underrepresented in science, technology, engineering and mathematics (STEM) fields. Although women’s participation in higher education is increasing, they are still significantly underrepresented in STEM fields. It is important to understand the forces at play, which drive women's choice of STEM education. A variety of factors impact the choice of females to take STEM path including personal (I.e. self-concept, self-efficacy, personal preferences, self-stereotyping and intrinsic motivation) as well as the external factors (i.e. role models, family, teacher’s influence as well as low recruitment of women in STEM fields). This paper systematically reviews the literature on young women’s intention to undertake STEM education in Malaysian context. The paper has adopted the PRISMA protocol for Systematic Literature Review (SLR). The paper has identified 10 research papers which have attempted to identify the factors effecting female participation in STEM education in Malaysian context. Furthermore, the paper has also highlighted the factors which have been identified by these studies as well as those personal and external factors which have not been studied extensively in Malaysian context. This paper can give readers a novel insight about factors influencing women’s participation in STEM education in Malaysian context  


Author(s):  
Shulamit Kahn ◽  
Donna Ginther

Researchers from economics, sociology, psychology, and other disciplines have studied the persistent underrepresentation of women in science, technology, engineering, and mathematics (STEM). This chapter summarizes this research. It argues that women’s underrepresentation is concentrated in the math-intensive science fields of geosciences, engineering, economics, math/computer science, and physical science. Its analysis concentrates on the environmental factors that influence ability, preferences, and the rewards for those choices. The chapter examines how gendered stereotypes, culture, role models, competition, risk aversion, and interests contribute to the gender STEM gap, starting in childhood, solidifying by middle school, and affecting women and men as they progress through school and higher education and into the labor market. The results are consistent with preferences and psychological explanations for the underrepresentation of women in math-intensive STEM fields.


2015 ◽  
Vol 112 (43) ◽  
pp. 13201-13206 ◽  
Author(s):  
Ian M. Handley ◽  
Elizabeth R. Brown ◽  
Corinne A. Moss-Racusin ◽  
Jessi L. Smith

Scientists are trained to evaluate and interpret evidence without bias or subjectivity. Thus, growing evidence revealing a gender bias against women—or favoring men—within science, technology, engineering, and mathematics (STEM) settings is provocative and raises questions about the extent to which gender bias may contribute to women’s underrepresentation within STEM fields. To the extent that research illustrating gender bias in STEM is viewed as convincing, the culture of science can begin to address the bias. However, are men and women equally receptive to this type of experimental evidence? This question was tested with three randomized, double-blind experiments—two involving samples from the general public (n = 205 and 303, respectively) and one involving a sample of university STEM and non-STEM faculty (n = 205). In all experiments, participants read an actual journal abstract reporting gender bias in a STEM context (or an altered abstract reporting no gender bias in experiment 3) and evaluated the overall quality of the research. Results across experiments showed that men evaluate the gender-bias research less favorably than women, and, of concern, this gender difference was especially prominent among STEM faculty (experiment 2). These results suggest a relative reluctance among men, especially faculty men within STEM, to accept evidence of gender biases in STEM. This finding is problematic because broadening the participation of underrepresented people in STEM, including women, necessarily requires a widespread willingness (particularly by those in the majority) to acknowledge that bias exists before transformation is possible.


2016 ◽  
Vol 43 (2) ◽  
pp. 163-176 ◽  
Author(s):  
Melissa A. Fuesting ◽  
Amanda B. Diekman

Because of stereotypes that science, technology, engineering, and mathematics (STEM) fields do not fulfill communal goals, communally oriented individuals may select out of STEM. One potential route to engaging and promoting communally oriented individuals in STEM fields is through interactions with advisors or role models in STEM. We first demonstrate the perceived difficulty of finding role models who enact communal behaviors in STEM relative to other fields (Preliminary Study). Communally oriented students reported higher likelihood of observing admired others in math or science (i.e., investigative vicarious learning) over time (Study 1). Individuals preferred hypothetical STEM advisors who enacted communal workplace behaviors (Studies 2a-2b). Finally, individuals’ communal orientation predicted how important they found the communal behaviors of actual role models (Studies 3a-3b). These findings provide further support for the goal congruity prediction that contexts—whether relational or occupational—that offer the pursuit of valued goals will be preferred.


2021 ◽  
pp. 073112142110286
Author(s):  
Jennifer Ashlock ◽  
Miodrag Stojnic ◽  
Zeynep Tufekci

Cultural processes can reduce self-selection into math and science fields, but it remains unclear how confidence in computer science develops, where women are currently the least represented in STEM (science, technology, engineering, and mathematics). Few studies evaluate both computer skills and self-assessments of skill. In this paper, we evaluate gender differences in efficacy across three STEM fields using a data set of middle schoolers, a particularly consequential period for academic pathways. Even though girls and boys do not significantly differ in terms of math grades and have similar levels of computer skill, the gender gap in computer efficacy is twice as large as the gap for math. We offer support for disaggregation of STEM fields, so the unique meaning making around computing can be addressed.


Author(s):  
Kathryn Strong Hansen

AbstractGreater emphasis on ethical issues is needed in science, technology, engineering, and mathematics (STEM) education. The fiction for specific purposes (FSP) approach, using optimistic science fiction texts, offers a way to focus on ethical reflection that capitalizes on role models rather than negative examples. This article discusses the benefits of using FSP in STEM education more broadly, and then explains how using optimistic fictions in particular encourages students to think in ethically constructive ways. Using examples of science fiction texts with hopeful perspectives, example discussion questions are given to model how to help keep students focused on the ethical issues in a text. Sample writing prompts to elicit ethical reflection are also provided as models of how to guide students to contemplate and analyze ethical issues that are important in their field of study. The article concludes that the use of optimistic fictions, framed through the lens of professional ethics guidelines and reinforced through ethical reflection, can help students to have beneficial ethical models.


Author(s):  
Pamela M. Leggett-Robinson ◽  
Brandi Campbell Villa

In 1976, the challenges faced by women of color who pursue careers in science, technology, engineering, and mathematics (STEM) fields were first brought to national attention. Forty-two years later, the authors re-examine the challenges, barriers, and successes of women of color in STEM higher education. This chapter examines the landscape of the STEM professoriate through a literature review (journals, trade magazines, theses, and dissertations) and reflective shorts and quotes from women of color navigating the STEM professoriate. The literature review spans a 10-year period (2008-2018). Both the review and the reflections focus on the areas of STEM belonging, self-presentation, stereotyping, institutional racism, discrimination, and tokenism as challenges faced by women of color in the STEM professoriate. Additionally, mechanisms used by women of color to navigate and succeed despite these barriers, such as mentoring, are explored throughout.


2019 ◽  
Vol 18 (3) ◽  
pp. mr3
Author(s):  
Daniel L. Reinholz ◽  
Tessa C. Andrews

There has been a recent push for greater collaboration across the science, technology, engineering, and mathematics (STEM) fields in discipline-based education research (DBER). The DBER fields are unique in that they require a deep understanding of both disciplinary content and educational research. DBER scholars are generally trained and hold professional positions in discipline-specific departments. The professional societies with which DBER scholars are most closely aligned are also often discipline specific. This frequently results in DBER researchers working in silos. At the same time, there are many cross-cutting issues across DBER research in higher education, and DBER researchers across disciplines can benefit greatly from cross-disciplinary collaborations. This report describes the Breaking Down Silos working meeting, which was a short, focused meeting intentionally designed to foster such collaborations. The focus of Breaking Down Silos was institutional transformation in STEM education, but we describe the ways the overall meeting design and structure could be a useful model for fostering cross-­disciplinary collaborations around other research priorities of the DBER community. We describe our approach to meeting recruitment, premeeting work, and inclusive meeting design. We also highlight early outcomes from our perspective and the perspectives of the meeting participants.


2020 ◽  
pp. 153819272091836
Author(s):  
Elsa Gonzalez ◽  
Cecilia Contreras Aguirre ◽  
Joenie Myers

This study examined the success and persistence of Latina students in the complex environment of science, technology, engineering, and mathematics (STEM) fields at a Tier 1 Research higher education institution in Texas. For this qualitative study, 10 Latina students pursuing STEM majors were interviewed within a framework focusing on Greene’s resilience theory. Results of this study suggest a strong likelihood for Latinas to succeed in STEM fields because of their development of resilience.


Sign in / Sign up

Export Citation Format

Share Document