Coastal Defense Strategies in the Wadden Sea Region: Coping with Climate Change

2009 ◽  
Vol 10 (4) ◽  
pp. 126-135 ◽  
Author(s):  
Anne Gydesen ◽  
Klaus Wagner
2021 ◽  
Vol 9 (8) ◽  
pp. 851
Author(s):  
Claudia Romagnoli ◽  
Flavia Sistilli ◽  
Luigi Cantelli ◽  
Margherita Aguzzi ◽  
Nunzio De Nigris ◽  
...  

The coastal area at Riccione, in the southern Emilia-Romagna littoral region, is exposed to erosive processes, which are expected to be enhanced by climate change. The beach, mostly composed of fine sand, is maintained through various defense strategies, including frequent nourishment interventions for balancing the sediment deficit and other experimental solutions for reducing coastal erosion. Artificial reshaping of the beach and “common practices” in the sediment management redefine the beach morphology and the sediment redistribution almost continuously. These activities overlap each other and with the coastal dynamics, and this makes it very difficult to evaluate their effectiveness, as well as the role of natural processes on the beach morphological evolution. Topo-bathymetric and sedimentological monitoring of the beach has been carried out on a regular basis since 2000 by the Regional Agency for Prevention, Environment and Energy of Emilia-Romagna (Arpae). Further monitoring of the emerged and submerged beach has been carried out in 2019–2021 in the framework of the research project STIMARE, focusing on innovative strategies for coastal monitoring in relation with erosion risk. The aim of this study is to assess the coastal behavior at the interannual/seasonal scale in the southern coastal stretch of Riccione, where the adopted coastal defense strategies and management actions mostly control the morphological variations in the emerged and submerged beach besides the wave and current regime. The topo-bathymetric variations and erosion/accretion patterns provided by multitemporal monitoring have been related to natural processes and to anthropogenic activities. The morphological variations have been also assessed in volumetric terms in the different subzones of the beach, with the aim of better understanding the onshore/offshore sediment exchange in relation with nourishments and in the presence of protection structures. The effectiveness of the adopted interventions to combat erosion, and to cope with future climate change-related impacts, appears not fully successful in the presence of an overall sediment deficit at the coast. This demonstrates the need for repeated monitoring of the emerged and submerged beach in such a critical setting.


2021 ◽  
Author(s):  
Bas Reedijk ◽  
Pieter Bakker

<p>The Afsluitdijk forms 32 km of the primary sea defence of the Netherlands. The Afsluitdijk was built as a closure dam in 1932 and separates the IJsselmeer from the Wadden-Sea and North Sea. Because of climate change the Afsluitdijk needs to be strengthened. A higher crest height is required to limit overtopping at higher water levels due to sea level rise. Heavier armour is required to protect the Afsluitdijk from higher wave heights. Because of the historic value of the Afsluitdijk, stringent architectural requirements are in place on the visual appearance of the dam after strengthening [1]. Therefore, a new concrete armour unit was developed to provide protection of the seaward side of the Afsluitdijk. This armour unit is called XblocPlus. The development of the armour unit is based on the breakwater armour unit Xbloc which has been applied since 2004. A saving of 56% on CO2 footprint was achieved compared to the Clients reference design.</p>


2018 ◽  
Vol 97 (3) ◽  
pp. 79-127 ◽  
Author(s):  
Bert L.A. Vermeersen ◽  
Aimée B.A. Slangen ◽  
Theo Gerkema ◽  
Fedor Baart ◽  
Kim M. Cohen ◽  
...  

AbstractRising sea levels due to climate change can have severe consequences for coastal populations and ecosystems all around the world. Understanding and projecting sea-level rise is especially important for low-lying countries such as the Netherlands. It is of specific interest for vulnerable ecological and morphodynamic regions, such as the Wadden Sea UNESCO World Heritage region.Here we provide an overview of sea-level projections for the 21st century for the Wadden Sea region and a condensed review of the scientific data, understanding and uncertainties underpinning the projections. The sea-level projections are formulated in the framework of the geological history of the Wadden Sea region and are based on the regional sea-level projections published in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). These IPCC AR5 projections are compared against updates derived from more recent literature and evaluated for the Wadden Sea region. The projections are further put into perspective by including interannual variability based on long-term tide-gauge records from observing stations at Den Helder and Delfzijl.We consider three climate scenarios, following the Representative Concentration Pathways (RCPs), as defined in IPCC AR5: the RCP2.6 scenario assumes that greenhouse gas (GHG) emissions decline after 2020; the RCP4.5 scenario assumes that GHG emissions peak at 2040 and decline thereafter; and the RCP8.5 scenario represents a continued rise of GHG emissions throughout the 21st century. For RCP8.5, we also evaluate several scenarios from recent literature where the mass loss in Antarctica accelerates at rates exceeding those presented in IPCC AR5.For the Dutch Wadden Sea, the IPCC AR5-based projected sea-level rise is 0.07±0.06m for the RCP4.5 scenario for the period 2018–30 (uncertainties representing 5–95%), with the RCP2.6 and RCP8.5 scenarios projecting 0.01m less and more, respectively. The projected rates of sea-level change in 2030 range between 2.6mma−1for the 5th percentile of the RCP2.6 scenario to 9.1mma−1for the 95th percentile of the RCP8.5 scenario. For the period 2018–50, the differences between the scenarios increase, with projected changes of 0.16±0.12m for RCP2.6, 0.19±0.11m for RCP4.5 and 0.23±0.12m for RCP8.5. The accompanying rates of change range between 2.3 and 12.4mma−1in 2050. The differences between the scenarios amplify for the 2018–2100 period, with projected total changes of 0.41±0.25m for RCP2.6, 0.52±0.27m for RCP4.5 and 0.76±0.36m for RCP8.5. The projections for the RCP8.5 scenario are larger than the high-end projections presented in the 2008 Delta Commission Report (0.74m for 1990–2100) when the differences in time period are considered. The sea-level change rates range from 2.2 to 18.3mma−1for the year 2100.We also assess the effect of accelerated ice mass loss on the sea-level projections under the RCP8.5 scenario, as recent literature suggests that there may be a larger contribution from Antarctica than presented in IPCC AR5 (potentially exceeding 1m in 2100). Changes in episodic extreme events, such as storm surges, and periodic (tidal) contributions on (sub-)daily timescales, have not been included in these sea-level projections. However, the potential impacts of these processes on sea-level change rates have been assessed in the report.


2012 ◽  
Vol 03 (02) ◽  
pp. 1250008 ◽  
Author(s):  
PETER LINQUITI ◽  
NICHOLAS VONORTAS

Adaptation to climate change is likely to be a significant challenge for developing countries. We examine whether a real options approach that recognizes uncertainty and maintains future flexibility can provide an improved adaptation investment strategy. We use a Monte Carlo model to test four strategies for defending against sea level rise. Two of the strategies are inflexible, with the coastal defense fully specified in the first year of analysis. The other two strategies are flexible real options that allow adjustments in the coastal defense over time. We emphatically show that a real options strategy has the potential to increase the benefits of proactive adaptation. Our results prove to be location-dependent, underscoring the need for location-specific analysis. We find that the quality of the information obtained over time has an important bearing on option value and that a country's institutional capability and the specific mechanisms of international development assistance may affect implementation.


2017 ◽  
Vol 21 (3) ◽  
pp. 513-529 ◽  
Author(s):  
Isabella Uhl ◽  
Johannes Klackl ◽  
Nina Hansen ◽  
Eva Jonas

Why is the fight against climate change so challenging? Research suggests that climate change information may trigger symbolic defense strategies such as derogative outgroup behaviors (e.g., ethnocentrism) instead of direct attempts to address the problem itself (e.g., proenvironmental behavior). Ingroup affirmation may help decrease symbolic responses. We conducted a 2 (Affirmation: ingroup vs. no affirmation) × 2 (Message: threat vs. control) × 2 (Nation: Austria vs. Argentina) experiment ( N = 243) to assess responses to climate change information (direct and symbolic) in participants from individualist and collectivist cultures. Participants responded with higher levels of ethnocentrism and a lower intention to engage in proenvironmental behavior after reading climate change information. This effect was significant in Austria. Using ingroup affirmation as an intervention tended to foster rather than reduce ethnocentrism. Thus, across cultures people resolve climate change threat in symbolic ways rather than by trying to address the problem itself.


2019 ◽  
Vol 7 (4) ◽  
pp. 117 ◽  
Author(s):  
Clément Bouvier ◽  
Bruno Castelle ◽  
Yann Balouin

Coastal defense strategies based on structures are increasingly unpopular as they are costly, leave lasting scars on the landscape, and sometimes have limited effectiveness or even adverse impacts. While a clear improvement concerning aesthetic considerations using soft submerged breakwater is undeniable, their design has often focused on wave transmission processes across the crest of the structure, overlooking short- to medium-term morphodynamic responses. In this study, we used a time- and depth-averaged morphodynamic model to investigate the impact of the implementation of a submerged breakwater on surf zone sandbar dynamics at the beach of Sète, SE France. The hydrodynamic module was calibrated with data collected during a field experiment using three current profilers deployed to capture rip-cell circulation at the edge of the structure. The model showed good agreement with measurements, particularly for the longshore component of the flow (RMSE = 0.07 m/s). Results showed that alongshore differential wave breaking at the edge of the submerged breakwater drove an intense (0.4 m/s) two-dimensional circulation for low- to moderate-energy waves. Simulations indicated that inner-bar rip channel development, which was observed prior to the submerged reef implementation, was inhibited in the lee of the structure as rip-cell circulation across the inner bar disappeared owing to persistently low-energy breaking waves. The cross-shore sandbar dynamics in the lee of the structure were also impacted due to the drastic decrease of the offshore-directed flow over the inner-bar during energetic events. This paper highlights that implementation of a submerged breakwater results in larges changes in nearshore hydrodynamics that, in turn, can affect overall surf zone sandbar behavior.


Sign in / Sign up

Export Citation Format

Share Document