Effects of Chemical Reaction and Nonlinear Thermal Radiation on Williamson Nanofluid Slip Flow over a Stretching Sheet Embedded in a Porous Medium

2016 ◽  
Vol 29 (5) ◽  
pp. 04016019 ◽  
Author(s):  
B. C. Prasannakumara ◽  
B. J. Gireesha ◽  
Rama S. R. Gorla ◽  
M. R. Krishnamurthy
2018 ◽  
Vol 48 (2) ◽  
pp. 744-759 ◽  
Author(s):  
Kh. Hosseinzadeh ◽  
M. Gholinia ◽  
B. Jafari ◽  
A. Ghanbarpour ◽  
H. Olfian ◽  
...  

2016 ◽  
Vol 5 (3) ◽  
Author(s):  
M.R. Krishnamurthy ◽  
B.J. Gireesha ◽  
B.C. Prasannakumara ◽  
Rama Subba Reddy Gorla

AbstractA theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.


Sign in / Sign up

Export Citation Format

Share Document