Analytical and Experimental Study on Upgrading the Seismic Performance of Reinforced Masonry Columns Using GFRP and CFRP Wraps

2018 ◽  
Vol 22 (4) ◽  
pp. 04018013 ◽  
Author(s):  
Ahmed Ashour ◽  
Khaled Galal ◽  
Nima Farnia
Author(s):  
Satoshi TAKISAWA ◽  
Showta NOMOTO ◽  
Keita ABE ◽  
Susumu NAKAJIMA ◽  
Hideaki TAKASAKI ◽  
...  

Author(s):  
Jun Zhao ◽  
Wenbo Ren ◽  
Xiaohui Ruan ◽  
Xinglong Gong ◽  
Chenzhe Si

2021 ◽  
Vol 11 (10) ◽  
pp. 4421
Author(s):  
Zhiming Zhang ◽  
Fenglai Wang

In this study, four single-story reinforced masonry shear walls (RMSWs) (two prefabricated and two cast-in-place) under reversed cyclic loading were tested to evaluate their seismic performance. The aim of the study was to evaluate the shear behavior of RMSWs with flanges at the wall ends as well as the effect of construction method. The test results showed that all specimens had a similar failure mode with diagonal cracking. However, the crack distribution was strongly influenced by the construction method. The lateral capacity of the prefabricated walls was 12% and 27% higher than that of the corresponding cast-in-place walls with respect to the rectangular and T-shaped cross sections. The prefabricated walls showed better post-cracking performance than did the cast-in-place wall. The secant stiffness of all the walls decreased rapidly to approximately 63% of the initial stiffness when the first major diagonal crack was observed. The idealized equivalent elastic-plastic system showed that the prefabricated walls had a greater displacement ductility of 3.2–4.8 than that of the cast-in-place walls with a displacement ductility value of 2.3–2.7. This proved that the vertical joints in prefabricated RMSWs enhanced the seismic performance of walls in shear capacity and ductility. In addition, the equivalent viscous damping of the specimens ranged from 0.13 to 0.26 for prefabricated and cast-in-place walls, respectively.


2011 ◽  
Vol 243-249 ◽  
pp. 1435-1438 ◽  
Author(s):  
Ming Chen ◽  
Yang Sun ◽  
Bing Qian Pi

The double C steel section is made of two C steels with gusset plate through bolts. A ridge joint of double C steel is studied through experiment under cyclic loading in this paper. Through the four specimens with different gusset-plate’s thickness and bolt spacing, we analyze the effect of the gusset-plate’s thickness and bolt spacing on stiffness, ductility and energy performance. At last we recommend the suitable gusset-plate’s thickness. The results can give a reference to the engineering application of cold-formed steel structure.


Author(s):  
Yong Wang ◽  
Huanjun Jiang ◽  
Chen Wu ◽  
Zihui Xu ◽  
Zhiyuan Qin

<p>Suspended ceiling systems (SCSs) experienced severe damage during strong earthquakes that occurred in recent years. The capacity of the ceiling component is a crucial factor affecting the seismic performance of SCS. Therefore, a series of static tests on suspended ceiling components under monotonic and cyclic loadings were carried out to investigate the seismic performance of the ceiling components. The ceiling components include main tee splices, cross tee latches and peripheral attachments. All specimens were tested under axial loading. Additionally, the static tests of cross tee latches subjected to shear and bending loadings were performed due to their seismic vulnerability. The failure pattern, load-carrying ability, deformation capacity and energy dissipation of the ceiling components are presented in detail in this study.</p>


Sign in / Sign up

Export Citation Format

Share Document