Residual Service Life Prediction for Bridges Based on Critical Life Curves

2017 ◽  
Vol 31 (5) ◽  
pp. 04017053 ◽  
Author(s):  
Hanwan Jiang ◽  
Songhui Li ◽  
Ruinian Jiang
2019 ◽  
Vol 289 ◽  
pp. 08002
Author(s):  
Joost Gulikers

There is an increasing demand from asset owners for service life prediction of existing reinforced concrete structures. This requires assessment of the current condition and modelling to allow for a prediction. This paper critically discusses a number of subjects relevant for service life prediction with respect to durability related to chloride-induced reinforcement corrosion. The subjects include the physical meaning and variability of the end-of-service-life criterion, the validity of the deterioration models, the availability, variability and reality level of input values for some model parameters, as well as some practical issues concerning site investigations. The findings are exemplified by calculation examples using both a deterministic as well as a full probabilistic approach. It is anticipated that in the future a full probabilistic approach will be adopted which makes service life predictions more prone to manipulation of input values, as literature provides a wide spectrum of values to choose from. Although a probabilistic approach seems very impressive to most asset owners it usually disguises the lack of knowledge, responsibility and liability of the consultant involved. It is concluded that asset owners will be easy prey for consultants to play a lucrative numbers game eventually providing a desirable and realistic outcome, mostly already known beforehand.


2019 ◽  
Vol 12 (1) ◽  
pp. 56-62 ◽  
Author(s):  
A. O. Nedosekin ◽  
A. V. Smirnov ◽  
D. P. Makarenko ◽  
Z. I. Abdoulaeva

The article presents new models and methods for estimating the residual service life of an autonomous energy system, using the functional operational risk criterion (FOR). The purpose of the article is to demonstrate a new method of durability evaluation using the fuzzy logic and soft computing framework. Durability in the article is understood as a complex property directly adjacent to the complex property of system resilience, as understood in the Western practice of assessing and ensuring the reliability of technical systems. Due to the lack of reliable homogeneous statistics on system equipment failures and recoveries, triangular fuzzy estimates of failure and recovery intensities are used as fuzzy functions of time based on incomplete data and expert estimates. The FOR in the model is the possibility for the system availability ratio to be below the standard level. An example of the evaluation of the FOR and the residual service life of a redundant cold supply system of a special facility is considered. The transition from the paradigm of structural reliability to the paradigm of functional reliability based on the continuous degradation of the technological parameters of an autonomous energy system is considered. In this case, the FOR can no longer be evaluated by the criterion of a sudden failure, nor is it possible to build a Markov’s chain on discrete states of the technical system. Assuming this, it is appropriate to predict the defi ning functional parameters of a technical system as fuzzy functions of a general form and to estimate the residual service life of the technical system as a fuzzy random variable. Then the FOR is estimated as the possibility for the residual life of the technical system to be below its warranty period, as determined by the supplier of the equipment.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 299
Author(s):  
Marzieh Riahinezhad ◽  
Madeleine Hallman ◽  
J-F. Masson

This paper provides a critical review of the degradation, durability and service life prediction (SLP) of polymeric building envelope materials (BEMs), namely, claddings, air/vapour barriers, insulations, sealants, gaskets and fenestration. The rate of material deterioration and properties determine the usefulness of a product; therefore, knowledge of the significant degradation mechanisms in play for BEMs is key to the design of proper SLP methods. SLP seeks to estimate the life expectancy of a material/component exposed to in-service conditions. This topic is especially important with respect to the potential impacts of climate change. The surrounding environment of a building dictates the degradation mechanisms in play, and as climate change progresses, material aging conditions become more unpredictable. This can result in unexpected changes and/or damages to BEMs, and shorter than expected SL. The development of more comprehensive SLP methods is economically and environmentally sound, and it will provide more confidence, comfort and safety to all building users. The goal of this paper is to review the existing literature in order to identify the knowledge gaps and provide suggestions to address these gaps in light of the rapidly evolving climate.


Sign in / Sign up

Export Citation Format

Share Document