Comparing Bridge Deck Runoff and Stormwater Control Measure Quality in North Carolina

2015 ◽  
Vol 141 (1) ◽  
pp. 04014045 ◽  
Author(s):  
Ryan J. Winston ◽  
Matthew S. Lauffer ◽  
Karthik Narayanaswamy ◽  
Andrew H. McDaniel ◽  
Brian S. Lipscomb ◽  
...  
Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1291 ◽  
Author(s):  
Rebecca A. Purvis ◽  
Ryan J. Winston ◽  
William F. Hunt ◽  
Brian Lipscomb ◽  
Karthik Narayanaswamy ◽  
...  

Bioswales are a promising stormwater control measure (SCM) for roadway runoff management, but few studies have assessed performance on a field scale. A bioswale is a vegetated channel with underlying engineered media and a perforated underdrain to promote improved hydrologic and water quality treatment. A bioswale with a rip-rap lined forebay was constructed along state highway NC 211 in Bolivia, North Carolina, USA, and monitored for 12 months. Thirty-seven of the 39 monitored rain events exfiltrated into underlying soils, resulting in no appreciable overflow or underdrain volume. The bioswale completely exfiltrated a storm event of 86.1 mm. The one event to have underdrain-only flow was 4.8 mm. The largest and third-largest rainfall depth events (82.6 and 146 mm, respectively) had a large percentage (85%) of volume exfiltrated, but also had appreciable overflow and underdrain volumes exiting the bioswale, resulting in no peak flow mitigation. Overall, this bioswale design was able to capture and manage storms larger than the design storm (38 mm), showing the positive hydrologic performance that can be achieved by this bioswale. The high treatment capabilities were likely due to the high infiltration rate of the media and the underlying soil, longer forebay underlain with media, gravel detention layer with an underdrain, and shallow slope.


2011 ◽  
Vol 64 (4) ◽  
pp. 974-979 ◽  
Author(s):  
S. K. Luell ◽  
W. F. Hunt ◽  
R. J. Winston

Two grassed bioretention cells were constructed in the easement of a bridge deck in Knightdale, North Carolina, USA, in October, 2009. One was intentionally undersized (‘small’), while the other was full sized (‘large’) per current North Carolina standards. The large and small cells captured runoff from the 25- and 8-mm events, respectively. Both bioretention cells employed average fill media depths of 0.65 m and internal water storage (IWS) zones of 0.6 m. Flow-proportional, composite water quality samples were collected and analyzed for nitrogen species, phosphorus species, and TSS. During 13 months of data collection, the large cell's median effluent concentrations and loads were less than those from the small cell. The small cell's TN and TSS load reductions were 84 and 50%, respectively, of those achieved by the large cell, with both cells significantly reducing TN and TSS. TP loads were not significantly reduced by either cell, likely due to low TP concentrations in the highway runoff which may have approached irreducible levels. Outflow pollutant loads from the large and small cell were not significantly different from one another for any of the examined pollutants. The small cell's relative performance provides support for retrofitting undersized systems in urbanized areas where there is insufficient space available for conventional full-sized stormwater treatment systems.


2019 ◽  
Vol 661 ◽  
pp. 386-392 ◽  
Author(s):  
Dong Liang ◽  
Lora A. Harris ◽  
Jeremy M. Testa ◽  
Vyacheslav Lyubchich ◽  
Solange Filoso

2012 ◽  
Vol 2309 (1) ◽  
pp. 178-199 ◽  
Author(s):  
Chad Wagner ◽  
Sharon Fitzgerald ◽  
Matthew Lauffer

The North Carolina Department of Transportation and the U.S. Geological Survey collaborated on a study to better understand the effects of stormwater runoff from bridges on receiving waters. The following tasks were performed: (a) characterizing the quality and quantity of stormwater runoff from a representative selection of bridges in North Carolina, (b) measuring the quality of stream water upstream of selected bridges to compare constituent concentrations and loads in bridge deck stormwater with those in the stream, (c) determining whether the chemistry of bed sediment upstream and downstream of selected bridges differed substantially according to the presence or absence of a best management practice for bridge runoff, and (d) estimating the rate at which bridge deck runoff mixed with the receiving stream. The investigation measured bridge deck runoff from 15 bridges for 12 to 15 storms, the quality of stream water for base flow and storm conditions at four of the bridge deck sites, and the chemistry of stream bed sediment upstream and downstream of 30 bridges across North Carolina. Runoff and stream samples were analyzed for a wide range of constituents, including dissolved and total recoverable metals and nutrients, major ions, total suspended solids, suspended sediment, oil and grease, petroleum hydrocarbons, and semi-volatile organic compounds. For 64% of comparisons, concentrations in bridge deck runoff were no different or were less than those measured in receiving waters, and the maximum concentrations of constituents in the bridge deck runoff were rapidly reduced to the ambient stream concentrations, generally within 50 ft downstream of the bridge.


2011 ◽  
pp. i-95
Author(s):  
Chad R. Wagner ◽  
Sharon A. Fitzgerald ◽  
Roy D. Sherrell ◽  
Douglas A. Harned ◽  
Erik L. Staub ◽  
...  

2021 ◽  
Author(s):  
Christopher John Walsh ◽  
Sam Imberger ◽  
Matthew J Burns ◽  
Darren G Bos ◽  
Tim D Fletcher

Traditional approaches to urban drainage degrade receiving waters. Alternative approaches have potential to protect downstream waters and provide other benefits to cities, including greater water security. Their widespread adoption requires robust demonstration of their feasibility and effectiveness. We conducted a catchment-scale, before-after-control-reference-impact experiment to assess the effect of dispersed stormwater control on stream ecosystems. We used a variant of effective imperviousness (EI), integrating catchment-scale stormwater runoff impact and stormwater-control-measure (SCM) performance, as the measure of experimental effect. We assessed the response of water quality variables in 6 sites on 2 streams, following SCM implementation in their catchments. We compared changes in those streams over 7 years, as SCM implementation increased, to the 12 preceding years, and over the 19 years in 3 reference and 2 control streams. SCMs reduced phosphorus and nitrogen concentrations and temperature, and increased electrical conductivity; with effect size negatively correlated with antecedent rain. SCM-induced reductions in phosphorus and temperature were of a similar magnitude to increases from urban development, when assessed as a function of change in EI. Nitrogen reductions were observed, even though concentrations among sites were not correlated with EI, being more influenced by septic tank seepage. SCMs had no effect on suspended solids concentrations, which were lower in urban streams than in reference streams. This experiment strengthens the inference that urban stormwater drainage increases contaminant concentrations in urban streams, and demonstrates that such impacts are reversible and likely preventable. SCMs reduce contaminant concentrations by reducing the frequency and magnitude of uncontrolled drainage flows and augmenting reduced baseflows. Increased EC and reduced temperature are likely a result of increased contribution of groundwater to baseflows. The stormwater control achieved by the experiment did not fully return phosphorus or nitrogen concentrations to reference levels, but their responses indicate such an outcome is possible in dominant conditions (up to ~20 mm of 24-h antecedent rain). This would require nearly all impervious surfaces draining to SCMs with large retention capacity, thus requiring more downslope space and water demand. EI predicts stream water quality responses to SCMs, allowing better catchment prioritization and SCM design standards for stream protection.


Sign in / Sign up

Export Citation Format

Share Document