Different Configurations of a Bioretention System Focused on Stormwater Harvesting in Brazil

2021 ◽  
Vol 147 (12) ◽  
pp. 04021058
Author(s):  
Thalita Raquel Pereira de Oliveira ◽  
Marina Batalini de Macedo ◽  
Tassiana Halmenschlager Oliveira ◽  
Cesar Ambrogi Ferreira do Lago ◽  
Marcus Nóbrega Gomes Jr. ◽  
...  
Author(s):  
José D. Henao Casas ◽  
Fritz Kalwa ◽  
Marc Walther ◽  
Randolf Rausch

AbstractTo cope with water scarcity in drylands, stormwater is often collected in surface basins and subsequently stored in shallow aquifers via infiltration. These stormwater harvesting systems are often accompanied by high evaporation rates and hygiene problems. This is commonly a consequence of low infiltration rates, which are caused by clogging layers that form on top of the soil profile and the presence of a thick vadose zone. The present study aims to develop a conceptual solution to increase groundwater recharge rates in stormwater harvesting systems. The efficiency of vadose-zone wells and infiltration trenches is tested using analytical equations, numerical models, and sensitivity analyses. Dams built in the channel of ephemeral streams (wadis) are selected as a study case to construct the numerical simulations. The modelling demonstrated that vadose-zone wells and infiltration trenches contribute to effective bypassing of the clogging layer. By implementing these solutions, recharge begins 2250–8100% faster than via infiltration from the bed surface of the wadi reservoir. The sensitivity analysis showed that the recharge rates are especially responsive to well length and trench depth. In terms of recharge quantity, the well had the best performance; it can infiltrate up to 1642% more water than the reservoir, and between 336 and 825% more than the trench. Moreover, the well can yield the highest cumulative recharge per dollar and high recharge rates when there are limitations to the available area. The methods investigated here significantly increased recharge rates, providing practical solutions to enhance aquifer water storage in drylands.


2019 ◽  
Vol 122 ◽  
pp. 104554 ◽  
Author(s):  
Graeme C. Dandy ◽  
Angela Marchi ◽  
Holger R. Maier ◽  
John Kandulu ◽  
Darla Hatton MacDonald ◽  
...  

Author(s):  
Kangmao He ◽  
Huapeng Qin ◽  
Fan Wang ◽  
Wei Ding ◽  
Yixiang Yin

Adding a submerged zone (SZ) is deemed to promote denitrification during dry periods and thus improve NO3--N removal efficiency of a bioretention system. However, few studies had investigated the variation of nitrogen concentration in the SZ during dry periods and evaluated the effect of the variation on nitrogen removal of the bioretention system. Based on the experiment in a mesocosm bioretetion system with SZ, this study investigated the variation of nitrogen concentration of the system under 17 consecutive cycles of wet and dry alternation with varied rainfall amount, influent nitrogen concentration and antecedent dry periods (ADP). The results indicated that (1) during the dry periods, NH4+-N concentrations in SZ showed an exponential decline trend, decreasing by 50% in 12.9 ± 7.3 hours; while NO3--N concentrations showed an inverse S-shape decline trend, decreasing by 50% in 18.8 ± 6.4 hours; (2) during the wet periods, NO3--N concentration in the effluent showed an S-shape upward trend; and at the early stage of the wet periods, the concentration was relatively low and significantly correlated with ADP, while the corresponding volume of the effluent was significantly correlated with the SZ depth; (3) in the whole experiment, the contribution of nitrogen decrease in SZ during dry periods to NH4+-N and NO3--N removal accounted for 12% and 92%, respectively; and the decrease of NO3--N in SZ during the dry period was correlated with the influent concentration in the wet period and the length of the dry period.


2021 ◽  
Author(s):  
Yao Chen ◽  
Renyu Chen ◽  
Zhen Liu ◽  
Xuehua Yu ◽  
Shuang Zheng ◽  
...  

Abstract Abstract Nitrogen migration and transformation in the stormwater bioretention system were studied in laboratory experiments, in which the effects of drying-rewetting were particularly investigated. The occurrence and distribution of nitrogen in the plants, the soil, and the pore water were explored under different drying-rewetting cycles. The results clearly showed that bioretention system could remove nitrogen efficiently in all drying-rewetting cycles. The incoming nitrogen could be retained in the topsoil (0–10 cm) and accumulated in the planted layer. However, the overlong dry periods (12 and 22 days) cause an increase in nitrate in the pore water. In addition, nitrogen is mostly stored in the plants’ stem tissues. Up to 23.26% of the inflowing nitrogen can be immobilized in plant organ after a dry period of 22 days. In addition, the relationships between nitrogen reductase activity in the soil and soil nitrogen content were explored. The increase of soil TN content could enhance the activity of nitrate reductase. Meanwhile, the activity of hydroxylamine reductase (HyR) could be enhanced with the increase of soil NO3− content. These results provide a reference for the future development of nitrogen transformation mechanism and the construction of stormwater bioretention systems.


2020 ◽  
Vol 2 (1) ◽  
pp. 91-111 ◽  
Author(s):  
Ryan J. Winston ◽  
Kristi Arend ◽  
Jay D. Dorsey ◽  
William F. Hunt

Abstract Stormwater runoff from urban development causes undesired impacts to surface waters, including discharge of pollutants, erosion, and loss of habitat. A treatment train consisting of permeable interlocking concrete pavement and underground stormwater harvesting was monitored to quantify water quality improvements. The permeable pavement provided primary treatment and the cistern contributed to final polishing of total suspended solids (TSS) and turbidity concentrations (>96%) and loads (99.5% for TSS). Because of this, >40% reduction of sediment-bound nutrient forms and total nitrogen was observed. Nitrate reduction (>70%) appeared to be related to an anaerobic zone in water stored in the scarified soil beneath the permeable pavement, allowing denitrification to occur. Sequestration of copper, lead, and zinc occurred during the first 5 months of monitoring, with leaching observed during the second half of the monitoring period. This was potentially caused by a decrease in pH within the cistern or residual chloride from deicing salt causing de-sorption of metals from accumulated sediment. Pollutant loading followed the same trends as pollutant concentrations, with load reduction improved vis-à-vis concentrations because of the 27% runoff reduction provided by the treatment train. This study has shown that permeable pavement can serve as an effective pretreatment for stormwater harvesting schemes.


Chemosphere ◽  
2017 ◽  
Vol 169 ◽  
pp. 89-98 ◽  
Author(s):  
Abbe Y.T. Lau ◽  
Daniel C.W. Tsang ◽  
Nigel J.D. Graham ◽  
Yong Sik Ok ◽  
Xin Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document