Characterization of Shear Behavior in Stainless Steel Wire Mesh Using Bias-Extension and Picture Frame Tests

2020 ◽  
Vol 146 (2) ◽  
pp. 04019127 ◽  
Author(s):  
Caizheng Wang ◽  
Krishna Shankar ◽  
Evgeny Morozov ◽  
Karthik Ram Ramakrishnan ◽  
Alan Fien
2011 ◽  
Vol 243-249 ◽  
pp. 5582-5588
Author(s):  
Ming Liu ◽  
Hua Huang ◽  
Jian Ling Hou ◽  
Bo Quan Liu

Rehabilitation of RC members with stainless steel wire mesh and permeability polymer mortar is a new method of structural strengthening with the advantages of resistance to fire, corrosion and ageing. Experiments were conducted to investigate the shear behavior of eight strengthened RC rectangular beams and one comparative RC beam. The shear mechanism of strengthened beams was analyzed, and the influences of the strengthening manners, bolts’ amount, bolts’ distance on the shear behavior of strengthened beams were discussed. The test results show that the rehabilitation greatly increase the beam’s shear load-carrying capacity, shear stiffness, and its ductility. But the range of load capacity improvement is greatly influenced by the bolts’ amount and distance, too much and dense bolts badly weaken the shear behavior of beam itself. The influences of the strengthening manners on the load capacity are puny, but the beams’ failure modes are different.


2012 ◽  
Vol 562-564 ◽  
pp. 56-59 ◽  
Author(s):  
Jian Zhuang ◽  
Meng Meng Du ◽  
Heng Zhi Cai ◽  
Ya Jun Zhang ◽  
Da Ming Wu

A facile method for manufacturing super hydrophobic surfaces is presented using the stainless steel wire mesh as templates. The rough surfaces of polymers including polycarbonate, polypropylene and PMMA are prepared with hot embossing on different specifications of stainless steel wire mesh. Scanning electron microscopy (SEM) results reveal that the surfaces roughness of the polymers can be controlled by selecting templates. Contact angle measurement shows that the water contact angles(WCA) rise with the increase of surface roughness, especially, the water contact angle on the PC surfaces prepared with specifications of 635mesh screen can reach to 152.3°, alias super hydrophobic surfaces.


Author(s):  
Liyue Gao ◽  
Xue Kong ◽  
Danni Meng ◽  
Senlin Yang ◽  
Wanying Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document