Effect of Base-Level Inerters on the Higher Mode Response of Uplifting Structures

2021 ◽  
Vol 147 (8) ◽  
Author(s):  
Rodrigo Thiers-Moggia ◽  
Christian Málaga-Chuquitaype
Keyword(s):  
Author(s):  
E. Rau ◽  
N. Karelin ◽  
V. Dukov ◽  
M. Kolomeytsev ◽  
S. Gavrikov ◽  
...  

There are different methods and devices for the increase of the videosignal information in SEM. For example, with the help of special pure electronic [1] and opto-electronic [2] systems equipotential areas on the specimen surface in SEM were obtained. This report generalizes quantitative universal method for space distribution representation of research specimen parameter by contour equal signal lines. The method is based on principle of comparison of information signal value with the fixed levels.Transformation image system for obtaining equal signal lines maps was developed in two versions:1)In pure electronic system [3] it is necessary to compare signal U (see Fig.1-a), which gives potential distribution on specimen surface along each scanning line with fixed base level signals εifor obtaining quantitative equipotential information on solid state surface. The amplitude analyzer-comparator gives flare sport videopulses at any fixed coordinate and any instant time when initial signal U is equal to one of the base level signals ε.


2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


Author(s):  
Diarmaid Lane ◽  
Sheryl Sorby

AbstractIn recent years, there has been a surge in research in spatial thinking across the international community. We now know that spatial skills are malleable and that they are linked to success across multiple disciplines, most notably Science, Technology, Engineering and Mathematics (STEM). While spatial skills have been examined by cognitive scientists in laboratory environments for decades, current research is examining how these skills can be developed in field-based environments. In this paper, we present findings from a study within a Technology Teacher preparation programme where we examined first-year students’ spatial skills on entry to university. We explain why it was necessary to embed a spatial skills intervention into Year 1 of the programme and we describe the impact that this had on students’ spatial scores and on academic performance. The findings from our study highlight a consistent gender gap in spatial scores at the start of the first-year with female students entering the Technology Teacher preparation programme at a lower base level than male students. We describe how we integrated spatial development activities into an existing course and how an improvement in spatial scores and overall course performance was observed. The paper concludes by discussing the long-term sustainability of integrating spatial interventions within teacher preparation programmes while also highlighting the importance of future research to examine spatial skills as a fundamental component of technological capability.


Sign in / Sign up

Export Citation Format

Share Document