Upper Bound Analysis of 3D-Reinforced Slope Stability Subjected to Pore-Water Pressure

2020 ◽  
Vol 20 (4) ◽  
pp. 06020002
Author(s):  
Huanping Pang ◽  
Xiupeng Nie ◽  
Zhibin Sun ◽  
Chaoqun Hou ◽  
Daniel Dias ◽  
...  
1993 ◽  
Vol 30 (3) ◽  
pp. 491-505 ◽  
Author(s):  
Delwyn G. Fredlund ◽  
Zai Ming Zhang ◽  
Karen Macdonald

The stability of potash tailings piles is investigated using a pore-water pressure generation and dissipation model together with a limit equilibrium analysis. It is found that a shallow toe failure mode is generally the most applicable and that the stability may be influenced by pore-water pressure migration below the pile. It is suggested that field studies would be useful in evaluating stability in the toe region of the pile. Key words : potash tailings, slope stability, pore pressure dissipation, solutioning.


2020 ◽  
Vol 15 (1) ◽  
pp. 19-26
Author(s):  
Euthalia Hanggari Sittadewi

The ability of plants to carry out the functions of interception, evapotranspiration and root reinforcement provides an effective and contributes to an increase in slope stability. Canopy has a role in the process of interception related to the reduction of amount the infiltrated water and the rapid fulfilment of soil moisture. Through the evapotranspiration mechanism, plants can reduce pore water pressure in the soil so that the trigger force for landslides can be reduced and the soil will be more stable. The roots mechanically strengthen the soil, through the transfer of shear stresses in the soil into tensile resistance in the roots. Roots also bind soil particles and increase surface roughness, thereby reducing the process of soil displacement or erosion. There is a positive relationship between the density of the tree canopy with the value of rainfall interception, evapotranspiration with a decrease in pore water pressure in the soil and the ability of root anchoring and binding with an increase in soil shear strength, indicating that the function of interception, evapotranspiration and strengthening of plant roots have a positive effect on increasing slope stability. Plants selection that considers the level of interception, the rate of evapotranspiration and root reinforcement by adjusting environmental and slopes conditions will determine the success of slope stabilization efforts by vegetative methods.Keywords : interception, evapotranspiration, root reinforcement, slope stabilization.


2020 ◽  
Vol 143 ◽  
pp. 01015
Author(s):  
Wenjie Song ◽  
Yanyong Xiang

An analytical continuous upper bound limit analysis is developed to analyse the effects of seepage on the transverse stability of underwater shield tunnels. The approach is based on an analytical continuous upper bound limit analysis method for cohesive-frictional soils. It employs the complex variables solution of the displacement field due to tunnel deformation and movement, and the analytical solution of the pore water pressure field for steady state seepage due to pore water influx at the tunnel perimeter. The most critical slip line position and the minimum required tunnel support pressure are determined by using a particle swarm optimization scheme for various generic situations. The method is verified via finite element simulation and comparison with the solution from using rigid block upper bound limit analysis. The parametric analysis revealed among other things that both the infimum of the necessary tunnel support pressure and the most critical plastic zone increase when the hydraulic head at the ground surface increases, but decrease when the tunnel influx increases due to the fact that pore water pressure at the tunnel perimeter decreases with the tunnel influx.


Sign in / Sign up

Export Citation Format

Share Document