Semiautomatic Determination of the Geological Strength Index Using SfM and ANN Techniques

2021 ◽  
Vol 21 (12) ◽  
Author(s):  
Marilia Abrão Zeni ◽  
Rodrigo de Lemos Peroni ◽  
Fábio Augusto Guidotti dos Santos
2018 ◽  
Vol 7 (4.35) ◽  
pp. 819
Author(s):  
R Roslan ◽  
RC Omar ◽  
I.N.Z. Baharuddin ◽  
Hairin Taha ◽  
M.M. Fared ◽  
...  

Segari - Ayer Tawar rock materials were generally characterized as slightly weathered (Grade II) to moderately weathered (Grade III).  Laboratory tests such as Brazilian tensile strength and point load strength index including direct shear strength were carried out using collected weathering sample from borehole to assess the rock strength. Hence, index testing was used to predict geological strength index, rock failure criterion from Hoek-Brown and deformation modulus mainly for the classification of rock mass engineering properties.  The relationship between the uniaxial compressive strength and geological strength index of rocks were used in proposing suitable methods for cutting the rock slope.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Adeoluwa O Oluwaseyi ◽  
Olawale O Ajibola

This study estimated the strength of the serpentinite rock mass of the underground gold mine “Oro Descanso” Placetas, Cuba. The rock mass was classified into its lithological group of massive, sheared serpentinite rocks and gabbros. The geo-technical information from the well log data obtained during drilling process (geological logs). The structural analysis was carried out through field observation and quantified by Geological Strength Index (GSI) of average values for massive serpentinite 60, sheared serpentinite 38 and gabbros 78. The generalized Hoek-Brown criterion with software programme, Rocklab 1.0, 2004 version was employed for the analysis and the determination of the rock mass local compressive strength (massive serpentinite = 1.733Mpa; sheared serpentinite = 0.464Mpa; gabbros = 10.354Mpa) and the global strength (massive serpentinite = 6.561Mpa, sheared serpentinite = 5.657Mpa and gabbros = 22.547Mpa). These estimated values characterize brittle type of failure mode and thus supports are recommended.


2004 ◽  
Vol 36 (4) ◽  
pp. 1767 ◽  
Author(s):  
Β. Μαρίνος ◽  
Π. Μαρίνος ◽  
E. Hoek

After one decade of application of the Geological Strength Index, GSI, and its extensions, in the quantitative characterisation of the rock mass, the present paper attempts to answer the questions that have been raised by the users about the determination of the GSI for various qualities of rock masses and various conditions. Recommendations are given and cases are discussed where GSI is not applicable. The paper also gives general guidance on the field of GSI values of rock masses for the most common rock types based on their pétrographie and their most usual structural characteristics.


2019 ◽  
Vol 23 (1) ◽  
pp. 17-25
Author(s):  
Mehmet Volkan Ozdogan ◽  
Alper Gonen

In the Bakibaba Copper Mine, the longhole stoping method is used in the production of copper ore. Stability problems have occurred at times on the footwall drift due to the interaction between the footwall drift and stope. In this study, we propose a method for estimating the minimum distance necessary to ensure a non-interaction zone between the footwall drift and stope. We used the finite element method and various distances between the footwall drift and stope and the displacements over drifts as parameters. We also performed analyses on various geological strength index values from low to high to determine the effect of the rock mass on the interaction between the footwall drift and stope


2021 ◽  
Vol 11 (8) ◽  
pp. 3351
Author(s):  
Gabor Somodi ◽  
Neil Bar ◽  
László Kovács ◽  
Marco Arrieta ◽  
Ákos Török ◽  
...  

A comprehensive understanding of geological, structural geological, hydrogeological and geotechnical features of the host rock are essential for the design and performance evaluation of surface and underground excavations. The Hungarian National Radioactive Waste Repository (NRWR) at Bátaapáti is constructed in a fractured granitic formation, and Telfer Gold Mine in Australia is excavated in stratified siltstones, sandstones and quartzites. This study highlights relationships between GSI chart ratings and calculated GSI values based on RMR rock mass classification data. The paper presents linear equations for estimating GSI from measured RMR89 values. Correlations between a and b constants were analyzed for different rock types, at surface and subsurface settings.


Author(s):  
Ana Alencar ◽  
Rubén Galindo ◽  
Svetlana Melentijevic

AbstractThe presence of the groundwater level (GWL) at the rock mass may significantly affect the mechanical behavior, and consequently the bearing capacity. The water particularly modifies two aspects that influence the bearing capacity: the submerged unit weight and the overall geotechnical quality of the rock mass, because water circulation tends to clean and open the joints. This paper is a study of the influence groundwater level has on the ultimate bearing capacity of shallow foundations on the rock mass. The calculations were developed using the finite difference method. The numerical results included three possible locations of groundwater level: at the foundation level, at a depth equal to a quarter of the footing width from the foundation level, and inexistent location. The analysis was based on a sensitivity study with four parameters: foundation width, rock mass type (mi), uniaxial compressive strength, and geological strength index. Included in the analysis was the influence of the self-weight of the material on the bearing capacity and the critical depth where the GWL no longer affected the bearing capacity. Finally, a simple approximation of the solution estimated in this study is suggested for practical purposes.


Sign in / Sign up

Export Citation Format

Share Document