Effect of Initial Density, Particle Shape, and Confining Stress on the Critical State Behavior of Weathered Gap-Graded Granular Soils

2021 ◽  
Vol 147 (2) ◽  
pp. 04020160 ◽  
Author(s):  
X. S. Shi ◽  
Kai Liu ◽  
Jianhua Yin
2001 ◽  
Vol 38 (3) ◽  
pp. 580-591 ◽  
Author(s):  
Y P Vaid ◽  
J D Stedman ◽  
S Sivathayalan

Liquefaction resistance of a sand under cyclic loading is assessed and the effects of the levels of confining pressure and static shear on resistance to liquefaction are investigated. Site-specific values of the resistance under specified levels of confining and static shear stresses are measured in the laboratory. The measured values are compared with those which would be predicted by the application of empirical multiplying factors Kσ and Kα to the reference resistance at 100 kPa effective confining stress with no static shear. It is shown that Kσ and Kα are not independent, as assumed in current practice. The combined factor Kσ × Kα resulting from the empirical method is shown to underestimate the cyclic resistance ratio regardless of the initial density and confining and static shear levels. The degree of conservatism is most dramatic at looser density states.Key words: sand, liquefaction, static, cyclic, static shear, confining stress.


2015 ◽  
Vol 17 (6) ◽  
pp. 687-702 ◽  
Author(s):  
Karen A. Taslagyan ◽  
Dave H. Chan ◽  
Norbert R. Morgenstern

1998 ◽  
Vol 35 (6) ◽  
pp. 909-925 ◽  
Author(s):  
Filippo Santucci de Magistris ◽  
Francesco Silvestri ◽  
Filippo Vinale

Compacted granular soils with small additions of bentonite have been used to build geotechnical structures such as impervious liners and cores of zoned earth dams. This paper presents a laboratory study showing how physical and mechanical characteristics of a silty sand are modified by a low percentage of bentonite. The effects of the addition of bentonite on the silty sand are reflected by an increase in the plasticity index, a reduction in maximum modified Proctor density, and a decrease in hydraulic conductivity. The most significant consequences on the mechanical properties are an increase of compressibility and secondary consolidation coefficients, and a reduction in shear strength. Different mixtures were either dynamically compacted at the optimum water content (compacted samples) or prepared after slurry consolidation from the minimum density (remoulded samples). Although the compacted and remoulded specimens show different isotropic compression lines, their critical-state lines in the v:p':q space are identical, where v is specific volume, p' is average effective stress, and q is deviator stress. Comparisons of the mechanical parameters with the existing literature database show that the compression coefficients of the remoulded mixtures are comparable to those of normally consolidated clayey soils of similar plasticity; nevertheless, those of the compacted mixtures are considerably lower. Also, the slopes of their critical-state lines in the q:p' plane are in good agreement with those predicted by empirical correlations for fine-grained soils.Key words: bentonite, silty sand, compaction, physical properties, compressibility, critical state.


1993 ◽  
Vol 30 (5) ◽  
pp. 739-746 ◽  
Author(s):  
P.G. Nicholson ◽  
R.B. Seed ◽  
H.A. Anwar

A computer-controlled injection-correction system has been developed to continuously and completely mitigate the adverse effects of membrane compliance for undrained testing of granular soils. The system was developed with the explicit idea that it could be quickly and easily adapted to most any up to date triaxial testing apparatus. A relationship between effective confining stress and volumetric compliance can be predetermined, as volumetric-compliance errors have been shown to be a direct and repeatable function of effective confining stresses for a given material. The predetermination of volumetric-compliance errors represents a suitable basis for control of injection–removal compensation for membrane compliance during undrained testing. A closed-loop computer-controlled system continuously monitors changes in sample effective confining stresses such that precalculated volumetric-compliance errors can be continuously offset by injecting or removing volumes of water equal to those errors throughout the duration of each test. The validity of the injection system was verified by comparison of the compensated tests to results of large-scale (300 mm diameter) tests of the same materials, as compliance effects for large-scale tests of this material were negligible. Key words : membrane, penetration, compliance, undrained testing, triaxial, compensation, liquefaction.


2016 ◽  
Vol 53 (4) ◽  
pp. 646-658 ◽  
Author(s):  
Qingsheng Chen ◽  
Buddhima Indraratna ◽  
John P. Carter ◽  
Sanjay Nimbalkar

In this paper, a simple but comprehensive cyclic stress–strain model that incorporates particle breakage for granular soils including ballast and rockfill has been proposed on the basis of bounding surface plasticity theory within a critical state framework. Particle breakage and its effects are captured by a critical state line that is translated in voids ratio–stress space according to the dissipated energy (plastic work), through a hyperbolic function. A comprehensive equation related to particle breakage is proposed for the stress–dilatancy relationship to capture the complex dilatancy of granular soils. By extending Masing’s rule to bounding surface plasticity theory and introducing a generalized homological centre, a combined isotropic–kinematic hardening rule and a mapping rule have been established to simulate more realistically the response of gravelly soils under cyclic loading. The applicability and accuracy of this model are demonstrated by comparing its predictions with experimental results for different types of granular soils, including rockfill, under both monotonic and cyclic loading conditions. This study shows that the model can capture the characteristic features of coarse granular soils under complex loading paths.


2019 ◽  
Vol 92 ◽  
pp. 06004
Author(s):  
Buddhima Indraratna ◽  
Yujie Qi ◽  
Ana Heitor ◽  
Jayan S. Vinod

The practical application of waste materials such as steel furnace slag (SFS) and coal wash (CW) is becoming more prevalent in many geotechnical projects. It was found that the inclusion of rubber crumbs (RCs) from recycled tyres into mixtures of SFS and CW not only solves the problem of large stockpiles of waste tyres, it also can provide an energy-absorbing medium that will reduce track degradation. In order to investigate the influence of RC on the geotechnical properties of the granular waste matrix (SFS+CW+RC), a series of monotonic consolidated drained triaxial tests were conducted on waste mixtures. The test results reveal that the inclusion of RC significantly affects the geotechnical properties of the waste mixtures, especially their critical state behaviour. Specifically, the waste matrix can achieve a critical state with a low RC content (<20%), whereas those mixtures with higher RC contents (20-40%) cannot attain a critical state within the ultimate strain capacity that can be applied to specimens using the traditional triaxial equipment. Therefore, for the waste matrix with higher RC contents extrapolation of the measured volumetric strains had to be adopted to obtain the appropriate critical state parameters. Moreover, the influence of energy absorbing property by adding RC on the critical state behaviour has also been captured through an empirical equation.


2021 ◽  
Vol 49 (6) ◽  
pp. 20200588
Author(s):  
Gui Yang ◽  
Xianhong Hu ◽  
Qian Feng ◽  
Sanjay Nimbalkar

Sign in / Sign up

Export Citation Format

Share Document