scholarly journals Characterization of Infiltration Capacity of Permeable Pavements with Porous Asphalt Surface Using Cantabrian Fixed Infiltrometer

2012 ◽  
Vol 17 (5) ◽  
pp. 597-603 ◽  
Author(s):  
Jorge Rodriguez-Hernandez ◽  
Daniel Castro-Fresno ◽  
Andrés H. Fernández-Barrera ◽  
Ángel Vega-Zamanillo
2017 ◽  
Vol 37 (1) ◽  
pp. 43 ◽  
Author(s):  
Vanessa Senior Arrieta ◽  
Jorge Eliecer Córdoba Maquilon

Porous asphalt mixes (PAM), form a special road surface for asphalt pavement structures, have a special particle size distribution that lets infiltrate to the runoff storm water through of it because of its voids content about 20 %. Many researchers conducted studies and have concluded that the use of modified asphalts is completely necessary to design PAM. Organic and chemical additives and special procedures as foamed asphalt have enhanced the performance of PAM, during their service life. This paper is focused on the mechanical characterization of PAM and how the asphalt modified with fatty acid amides, influenced on their behavior and performance. Based on an experimental methodology with laboratory tests aimed at establishing a comparison between porous asphalt mixes, using for its design and production a penetration 60-70 pure asphalt and another one asphalt modified with fatty acid amides.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1563 ◽  
Author(s):  
Mari Danz ◽  
William Selbig ◽  
Nicolas Buer

Permeable pavement has the potential to be an effective tool in managing stormwater runoff through retention of sediment and other contaminants associated with urban development. The infiltration capacity of permeable pavement declines as more sediment is captured, thereby reducing its ability to treat runoff. Regular restorative maintenance practices can alleviate this issue and prolong the useful life and benefits of the system. Maintenance practices used to restore the infiltration capacity of permeable pavement were evaluated on three surfaces: Permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). Each of the three test plots received a similar volume of runoff and sediment load from an adjacent, impervious asphalt parking lot. Six different maintenance practices were evaluated over a four-year period: Hand-held pressure washer and vacuum, leaf blower and push broom, vacuum-assisted street cleaner, manual disturbance of PICP aggregate, pressure washing and vacuuming, and compressed air and vacuuming. Of the six practices tested, five were completed on PICP, four on PC, and two on PA. Nearly all forms of maintenance resulted in increased average surface infiltration rates. Increases ranged from 94% to 1703% for PICP, 5% to 169% for PC, and 16% to 40% for PA. Disruption of the aggregate between the joints of PICP, whether by simple hand tools or sophisticated machinery, resulted in significant (p ≤ 0.05) gains in infiltration capacity. Sediment penetrated into the solid matrix of the PC and PA, making maintenance practices using a high-pressure wash followed by high-suction vacuum the most effective for these permeable pavement types. In all instances, when the same maintenance practice was done on multiple surfaces, PICP showed the greatest recovery in infiltration capacity.


2019 ◽  
Author(s):  
Axel Schaffitel ◽  
Tobias Schuetz ◽  
Markus Weiler

Abstract. Knowledge on water and energy fluxes is a key for urban planning and design. Nevertheless, hydrological data for urban environments is sparse and as a result, many processes are still poorly understood and thus inadequately represented within models. We contribute to reduce this shortcoming by providing a dataset, which includes time series of soil moisture and soil temperature measured underneath 18 different permeable pavements (PPs) and 4 urban greenspaces located within the city of Freiburg (Germany). Time series were recorded with a high temporal resolution of 10 min with a total of 65 individual soil moisture sensors and cover a measuring period of 2 entire years (Nov. 2016 – Oct. 2018). The recorded time series contain valuable information on the soil hydrological behavior and demonstrate the effect of surface properties and surrounding urban structures on soil temperatures. In addition, we performed double-ring infiltration experiments, which in combination with the soil moisture measurements yielded soil hydrological parameters for the PPs including porosity, field capacity and infiltration capacity. We present this unique dataset, which is a valuable source of information for studying urban water and energy cycles. We encourage its usage in various ways e.g. for model calibration and validation purposes, to study thermal regimes of cities and to derive urban water and energy fluxes. The dataset is freely available at the FreiDok plus data repository at https://freidok.uni-freiburg.de/data/149321 and https://doi.org/10.6094/UNIFR/149321 (Schaffitel et al., 2019).


2012 ◽  
Vol 46 (5) ◽  
pp. 831-839 ◽  
Author(s):  
Quantao Liu ◽  
Erik Schlangen ◽  
Martin van de Ven

2021 ◽  
Vol 69 (3) ◽  
pp. 332-346
Author(s):  
Larissa Virgínia da Silva Ribas ◽  
Artur Paiva Coutinho ◽  
Laurent Lassabatere ◽  
Severino Martins dos Santos Neto ◽  
Suzana Maria Gico Lima Montenegro ◽  
...  

Abstract The permeable pavement is a compensatory drainage technique for urban waters that aims to control runoff and to ensure ideal hydrological conditions. This work had as main objectives to evaluate the infiltration capacity of a permeable pavement (PP) at real scale, through analytical and numerical modeling. It relies on water infiltration experiments and related modeling for the hydrodynamic characterization of the coating layer (saturated hydraulic conductivity, Ks , and sorptivity, S). A large panel of analytical and numerical models was considered, and several estimates were obtained. Then, the criteria for the evaluation of the maintenance requirement of the permeable pavements were computed for all the Ks -estimates considering the NCRS standards (assessment of permeability levels). The results indicated nice fits and accurate estimates for both the saturated hydraulic conductivity and the sorptivity. However, the Ks -estimates depended on the considered model and led to contrasting results in terms of classification. For 8 of the 9 models, the value of the Ks -estimate leads to the classification of “Group A” of the NCRS soil classification, meaning a very permeable material. In contrasts, the last method (numerical inverse modeling) classified the permeable pavement as “Group D”, i.e., soils with low permeability. Those results show the importance of the selection of characterization methods regarding the assessment of the hydrological classification of permeable pavements.


2020 ◽  
Author(s):  
Axel Schaffitel ◽  
Tobias Schuetz ◽  
Markus Weiler

Abstract. Water fluxes at the soil-atmosphere interface are a key information for studying the terrestrial water cycle. However, measuring and modelling water fluxes in the vadose zone poses great challenges. While direct measurements require costly lysimeters, common soil hydrologic models rely on a correct parametrization, a correct representation of the involved processes and on the selection of correct initial and boundary conditions. In contrast to lysimeter measurements, soil moisture measurements are relatively cheap and easy to perform. Using such measurements, data-driven approaches offer the possibility to derive water fluxes directly. Here we present FluSM (Fluxes from Soil Moisture measurements), which is a simple, parsimonious and robust data-driven water balancing framework. FluSM requires only one single input parameter (the infiltration capacity) and is especially valuable for cases where the application of Richards based models is critical. Since Permeable Pavements (PPs) present such a case, we apply FluSM on a recently published soil moisture dataset to obtain the water balance of 15 different PPs over a period of two years. Consistent with findings from previous studies, our results show that vertical drainage dominates the water balance of PPs, while surface runoff plays only a minor role. An additional uncertainty analysis demonstrates the ability of the FluSM-approach for water balance studies, since input and parameter uncertainties have only small effects on the characteristics of the derived water balances. Due to the lack of data on the hydrologic behavior of PPs under field conditions, our results are of special interest for urban hydrology.


Water ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 480 ◽  
Author(s):  
Valerio Andres-Valeri ◽  
Luis Juli-Gandara ◽  
Daniel Jato-Espino ◽  
Jorge Rodriguez-Hernandez

Sign in / Sign up

Export Citation Format

Share Document