scholarly journals Fluxes from Soil Moisture Measurements (FluSM v1.0). A Data-driven Water Balance Framework for Permeable Pavements

2020 ◽  
Author(s):  
Axel Schaffitel ◽  
Tobias Schuetz ◽  
Markus Weiler

Abstract. Water fluxes at the soil-atmosphere interface are a key information for studying the terrestrial water cycle. However, measuring and modelling water fluxes in the vadose zone poses great challenges. While direct measurements require costly lysimeters, common soil hydrologic models rely on a correct parametrization, a correct representation of the involved processes and on the selection of correct initial and boundary conditions. In contrast to lysimeter measurements, soil moisture measurements are relatively cheap and easy to perform. Using such measurements, data-driven approaches offer the possibility to derive water fluxes directly. Here we present FluSM (Fluxes from Soil Moisture measurements), which is a simple, parsimonious and robust data-driven water balancing framework. FluSM requires only one single input parameter (the infiltration capacity) and is especially valuable for cases where the application of Richards based models is critical. Since Permeable Pavements (PPs) present such a case, we apply FluSM on a recently published soil moisture dataset to obtain the water balance of 15 different PPs over a period of two years. Consistent with findings from previous studies, our results show that vertical drainage dominates the water balance of PPs, while surface runoff plays only a minor role. An additional uncertainty analysis demonstrates the ability of the FluSM-approach for water balance studies, since input and parameter uncertainties have only small effects on the characteristics of the derived water balances. Due to the lack of data on the hydrologic behavior of PPs under field conditions, our results are of special interest for urban hydrology.

2021 ◽  
Vol 14 (4) ◽  
pp. 2127-2142
Author(s):  
Axel Schaffitel ◽  
Tobias Schuetz ◽  
Markus Weiler

Abstract. Water fluxes at the soil–atmosphere interface are a key piece of information for studying the terrestrial water cycle. However, measuring and modeling water fluxes in the vadose zone poses great challenges. While direct measurements require costly lysimeters, common soil hydrologic models rely on a correct parametrization, a correct representation of the involved processes, and the selection of correct initial and boundary conditions. In contrast to lysimeter measurements, soil moisture measurements are relatively cheap and easy to perform. Using such measurements, data-driven approaches offer the possibility to derive water fluxes directly. Here we present FluSM (fluxes from soil moisture measurements), which is a simple, parsimonious and robust data-driven water balancing framework. FluSM requires only a single input parameter (the infiltration rate) and is especially valuable for cases where the application of Richards-based models is critical. Since permeable pavements (PPs) present such a case, we apply FluSM on a recently published soil moisture data set to obtain the water balance of 15 different PPs over a period of 2 years. Consistent with findings from previous studies, our results show that vertical drainage dominates the water balance of PPs, while surface runoff plays only a minor role. An additional uncertainty analysis demonstrates the ability of the FluSM-approach for water balance studies, since input and parameter uncertainties only have a small effect on the characteristics of the derived water balances. Due to the lack of data on the hydrologic behavior of PPs under field conditions, our results are of special interest for urban hydrology.


2021 ◽  
Vol 29 (7) ◽  
pp. 2411-2428
Author(s):  
Robin K. Weatherl ◽  
Maria J. Henao Salgado ◽  
Maximilian Ramgraber ◽  
Christian Moeck ◽  
Mario Schirmer

AbstractLand-use changes often have significant impact on the water cycle, including changing groundwater/surface-water interactions, modifying groundwater recharge zones, and increasing risk of contamination. Surface runoff in particular is significantly impacted by land cover. As surface runoff can act as a carrier for contaminants found at the surface, it is important to characterize runoff dynamics in anthropogenic environments. In this study, the relationship between surface runoff and groundwater recharge in urban areas is explored using a top-down water balance approach. Two empirical models were used to estimate runoff: (1) an updated, advanced method based on curve number, followed by (2) bivariate hydrograph separation. Modifications were added to each method in an attempt to better capture continuous soil-moisture processes and explicitly account for runoff from impervious surfaces. Differences between the resulting runoff estimates shed light on the complexity of the rainfall–runoff relationship, and highlight the importance of understanding soil-moisture dynamics and their control on hydro(geo)logical responses. These results were then used as input in a water balance to calculate groundwater recharge. Two approaches were used to assess the accuracy of these groundwater balance estimates: (1) comparison to calculations of groundwater recharge using the calibrated conceptual HBV Light model, and (2) comparison to groundwater recharge estimates from physically similar catchments in Switzerland that are found in the literature. In all cases, recharge is estimated at approximately 40–45% of annual precipitation. These conditions were found to closely echo those results from Swiss catchments of similar characteristics.


2020 ◽  
Author(s):  
Jennifer Pirret ◽  
Fai Fung ◽  
John. F.B. Mitchell ◽  
Rachel McInnes

<p>Soil moisture is a key environmental factor for plant cultivation: too little and plant growth is restricted due to drought conditions; too much and soil becomes water-logged. It is important to understand how well climate models can represent current soil moisture processes as well as how soil moisture will respond to a changing climate, to inform adaptation of plant cultivation to future climate change. We explore current and future climate soil moisture conditions alongside water cycle processes such as evaporation and run-off in the latest UK Climate Projections (UKCP). Three model ensembles are available: UKCP Global, Regional and Local, with horizontal resolutions of 60km, 12km and 2.2km respectively. These each contain the Joint UK Land Environment Simulator (JULES) model as their land surface component. This suite of models offers the opportunity to understand the effects of parameter uncertainty and spatial resolution. Firstly, we assess the performance of the Global and Regional simulations by evaluating results from the baseline period (1981-2010) in terms of soil moisture (and the overall water balance) by comparing it to observations and to JULES driven by observations. Secondly, we assess how the water balance responds to a high future greenhouse gas concentration pathway. We find that soil moisture is likely to be lower in the summer and early autumn and spends a longer time below levels optimal for plant growth. The potential drivers of this change are explored, including future changes in precipitation and evaporation.</p>


2019 ◽  
Author(s):  
Axel Schaffitel ◽  
Tobias Schuetz ◽  
Markus Weiler

Abstract. Knowledge on water and energy fluxes is a key for urban planning and design. Nevertheless, hydrological data for urban environments is sparse and as a result, many processes are still poorly understood and thus inadequately represented within models. We contribute to reduce this shortcoming by providing a dataset, which includes time series of soil moisture and soil temperature measured underneath 18 different permeable pavements (PPs) and 4 urban greenspaces located within the city of Freiburg (Germany). Time series were recorded with a high temporal resolution of 10 min with a total of 65 individual soil moisture sensors and cover a measuring period of 2 entire years (Nov. 2016 – Oct. 2018). The recorded time series contain valuable information on the soil hydrological behavior and demonstrate the effect of surface properties and surrounding urban structures on soil temperatures. In addition, we performed double-ring infiltration experiments, which in combination with the soil moisture measurements yielded soil hydrological parameters for the PPs including porosity, field capacity and infiltration capacity. We present this unique dataset, which is a valuable source of information for studying urban water and energy cycles. We encourage its usage in various ways e.g. for model calibration and validation purposes, to study thermal regimes of cities and to derive urban water and energy fluxes. The dataset is freely available at the FreiDok plus data repository at https://freidok.uni-freiburg.de/data/149321 and https://doi.org/10.6094/UNIFR/149321 (Schaffitel et al., 2019).


2014 ◽  
Vol 18 (3) ◽  
pp. 1105-1118 ◽  
Author(s):  
N. Ursino ◽  
G. Cassiani ◽  
R. Deiana ◽  
G. Vignoli ◽  
J. Boaga

Abstract. Land fallowing is one possible response to shortage of water for irrigation. Leaving the soil unseeded implies a change of the soil functioning that has an impact on the water cycle. The development of a soil crust in the open spaces between the patterns of grass weed affects the soil properties and the field-scale water balance. The objectives of this study are to test the potential of integrated non-invasive geophysical methods and ground-image analysis and to quantify the effect of the soil–vegetation interaction on the water balance of fallow land at the local- and plot scale. We measured repeatedly in space and time local soil saturation and vegetation cover over two small plots located in southern Sardinia, Italy, during a controlled irrigation experiment. One plot was left unseeded and the other was cultivated. The comparative analysis of ERT maps of soil moisture evidenced a considerably different hydrologic response to irrigation of the two plots. Local measurements of soil saturation and vegetation cover were repeated in space to evidence a positive feedback between weed growth and infiltration at the fallow plot. A simple bucket model captured the different soil moisture dynamics at the two plots during the infiltration experiment and was used to estimate the impact of the soil vegetation feedback on the yearly water balance at the fallow site.


2015 ◽  
Vol 39 (5) ◽  
pp. 1336-1343 ◽  
Author(s):  
Davi de Carvalho Diniz Melo ◽  
Edson Wendland ◽  
Rafael Chaves Guanabara

ABSTRACT Groundwater management depends on the knowledge on recharge rates and water fluxes within aquifers. The recharge is one of the water cycle components most difficult to estimate. As a result, despite the chosen method, the estimates are subject to uncertainties that can be identified by means of comparison with other approaches. In this study, groundwater recharge estimates based on the water balance in the unsaturated zone is assessed. Firstly, the approach is evaluated by comparing the results with those of another method. Then, the estimates are used as inputs in a transient groundwater flow model in order to assess how the water table would respond to the obtained recharges rates compared to measured levels. The results suggest a good performance of the adopted approach and, despite some inherent limitations, it has advantages over other methods since the data required are easier to obtain.


2020 ◽  
Author(s):  
Camelia-Eliza Telteu ◽  
Hannes Müller Schmied ◽  
Wim Thiery ◽  
Guoyong Leng ◽  
Peter Burek ◽  
...  

<p>Hydrological models have been developed in response to the need to understand the complex water cycle of the Earth and to assess its interaction with historical and future climate scenarios. In the global water sector of the Inter-Sectoral Impact Model Intercomparison Project phase 2b (ISIMIP2b), six land surface models (LSMs), eight hydrological models (GHMs), and one dynamic vegetation model (DGVM) are contributing with transient simulations spanning from 1660 to 2300. The model simulations follow a common protocol and are driven by common bias adjusted climate model outputs combined with plausible socio-economic scenarios and representative concentration pathways. The main goal of this study is to highlight similarities and differences among these models in simulating the vertical water balance. The main similarity of these models consists in the water cycle simulation, even if the models have been developed for different purposes such as energy cycle (LSMs), water cycle (GHMs), or vegetation cycle (DGVM) simulation. In particular, we address the following research question: 1) what equations are used to compute water storages and water fluxes; 2) how different are the equations among the models; 3) how the equations were adjusted; 4) how many parameters are used by the models; 5) how often the parameters are used; 6) how similar or different are the parameters among the models. To this end, we apply a standard writing style of the water storages and water fluxes included in the models, to easily identify the similarities and differences among them. Most of the models include in their structure the canopy, soil, and snow storages, and almost half of them include the groundwater storage. Furthermore, we find that: 1) a model needs a very good documentation, this would help to easily identify and understand the equations in the code; 2) some modelers teams use common approaches resulting in similar equations of water storages or water fluxes, but different models structures still lead to different models results; 3) collaboration and communication among the modelers are necessary, on the one hand, for the realization of the models standard writing style, and on the other hand, for a better understanding of the models themselves, especially their strengths, limitations and results. Overall, our results (i) help to better explain the different models results and to attribute these to the differences in simulating specific processes; (ii) contribute to the remarkable efforts in creating a common protocol and a common input datasets for well-defined simulations; (iii) foster a better understanding of how the models work and finding new ways of improvement and development.</p>


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 34
Author(s):  
Elisa Mammoliti ◽  
Davide Fronzi ◽  
Adriano Mancini ◽  
Daniela Valigi ◽  
Alberto Tazioli

Nowadays, the balance between incoming precipitation and stream or spring discharge is a challenging aspect in many scientific disciplines related to water management. In this regard, although advances in the methodologies for water balance calculation concerning each component of the water cycle have been achieved, the Thornthwaite–Mather method remains one of the most used, especially for hydrogeological purposes. In fact, in contrast to physical-based models, which require many input parameters, the Thornthwaite–Mather method is a simple, empirical, data-driven procedure in which the error associated with its use is smaller than that associated with the measurement of input data. The disadvantage of this method is that elaboration times can be excessively long if a classical MS Excel file is used for a large amount of data. Although many authors have attempted to automatize the procedure using simple algorithms or graphical user interfaces, some bugs have been detected. For these reasons, we propose a WebApp for monthly water balance calculation, called WaterbalANce. WaterbalANce was written in Python and is driven by a serverless computing approach. Two respective European watersheds are selected and presented to demonstrate the application of this method.


2020 ◽  
Vol 12 (1) ◽  
pp. 501-517
Author(s):  
Axel Schaffitel ◽  
Tobias Schuetz ◽  
Markus Weiler

Abstract. Knowledge of water and energy fluxes is key for urban planning and design. Nevertheless, hydrological data from urban environments are sparse, and, as a result, many processes are still poorly understood and thus inadequately represented within models. We contribute to reducing this shortfall by providing a dataset that includes time series of soil moisture and soil temperature measured underneath 18 different permeable pavements (PPs) and 4 urban green spaces located within the city of Freiburg (Germany). Time series were recorded with a high temporal resolution of 10 min using a total of 65 individual soil moisture sensors and covering a measurement period of 2 years (November 2016–October 2018). The recorded time series contain valuable information on the soil hydrological behavior of PPs and demonstrate the effect of surface properties and surrounding urban structures on soil temperatures. In addition, we performed double-ring infiltration experiments, which in combination with the soil moisture measurements yielded soil hydrological parameters for the PPs, including porosity, field capacity and infiltration capacity. We present this unique dataset, which is a valuable source of information for studying urban water and energy cycles. We encourage its usage in various ways, e.g., for model calibration and validation purposes, study of thermal regimes of cities, and derivation of urban water and energy fluxes. The dataset is freely available from the FreiDok plus data repository at https://freidok.uni-freiburg.de/data/151573 and https://doi.org/10.6094/UNIFR/151573 (Schaffitel et al., 2019).


Sign in / Sign up

Export Citation Format

Share Document