Sulfate Resistance of Clay-Portland Cement and Clay High-Calcium Fly Ash Geopolymer

2015 ◽  
Vol 27 (5) ◽  
pp. 04014158 ◽  
Author(s):  
Patimapon Sukmak ◽  
Pre De Silva ◽  
Suksun Horpibulsuk ◽  
Prinya Chindaprasirt
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ganesan Lavanya ◽  
Josephraj Jegan

This study presents an investigation into the durability of geopolymer concrete prepared using high calcium fly ash along with alkaline activators when exposed to 2% solution of sulfuric acid and 5% magnesium sulphate for up to 45 days. The durability was also assessed by measuring water absorption and sorptivity. Ordinary Portland cement concrete was also prepared as control concrete. The grades chosen for the investigation were M20, M40, and M60. The alkaline solution used for present study is the combination of sodium silicate and sodium hydroxide solution with the ratio of 2.50. The molarity of sodium hydroxide was fixed as 12. The test specimens were150×150×150 mm cubes,100×200 mm cylinders, and100×50 mm discs cured at ambient temperature. Surface deterioration, density, and strength over a period of 14, 28, and 45 days were observed. The results of geopolymer and ordinary Portland cement concrete were compared and discussed. After 45 days of exposure to the magnesium sulfate solution, the reduction in strength was up to 12% for geopolymer concrete and up to 25% for ordinary Portland cement concrete. After the same period of exposure to the sulphuric acid solution, the compressive strength decrease was up to 20% for geopolymer concrete and up to 28% for ordinary Portland cement concrete.


2020 ◽  
Vol 841 ◽  
pp. 9-13
Author(s):  
Teewara Suwan ◽  
Peerapong Jitsangiam ◽  
Prinya Chindaprasirt

Nanotechnology is receiving widespread attention in many industrial sectors, including construction material industry. One of the nano-scale admixtures, which has the potential to enhance the performance of cement and concrete, is known as Nano-silica (n-SiO2). In general, fly ash (FA) is currently used in cement and concrete industry for replacing the consumption of Portland cement (OPC) to reduce its production cost as well as to improve some specific required properties, e.g., workability or low internal heat liberation. However, the strength of hardened Portland cement is normally decreased when a higher amount of fly ash is presented. This research article is therefore pointed on the influence of nano-silica dosage on the properties of cement paste incorporating with high calcium fly ash. Seven different proportions of OPC:FA were prepared viz. 100:0, 80:20, 60:40, 50:50, 40:60, 20:80 and 0:100 by weight. The commercial grade nano-silica (in liquid form) was used as an admixture in those mixes by 0.0, 0.5, 1.0 and 1.5 wt% of the mixing water with a water-to-binder (w/b) ratio of 0.30. The results indicated that the addition of n-SiO2 improved the compressive strength of all mixtures (with and without high calcium FA) as the presence of n-SiO2 can be a source of silica and easily contribute to an additional formation of CSH in the cementing system, confirmed by the results of XRD analysis. The main findings show a potential approach of using n-SiO2 as an admixture for cement and concrete construction.


2016 ◽  
Vol 21 (6) ◽  
pp. 2202-2210 ◽  
Author(s):  
Tanakorn Phoo-ngernkham ◽  
Sakonwan Hanjitsuwan ◽  
Nattapong Damrongwiriyanupap ◽  
Prinya Chindaprasirt

Author(s):  
Jacek Gołaszewski ◽  
Tomasz Ponikiewski ◽  
Grzegorz Cygan

Abstract The rheological properties of fresh ordinary concrete are closely affected by temperature and time. The paper presents the study of consistency of fresh concrete mixtures made with Portland cement and cement with calcareous fly ash. Two types of admixtures were used. It was proven that the temperature has a clear effect on workability and compressive strength concrete. Influence on workability can be reduced by selecting the appropriate superplasticizer and cement.


2013 ◽  
Vol 20 (2) ◽  
pp. 214-220 ◽  
Author(s):  
Tanakorn Phoo-ngernkham ◽  
Prinya Chindaprasirt ◽  
Vanchai Sata ◽  
Saengsuree Pangdaeng ◽  
Theerawat Sinsiri

2014 ◽  
Vol 53 ◽  
pp. 269-274 ◽  
Author(s):  
Saengsuree Pangdaeng ◽  
Tanakorn Phoo-ngernkham ◽  
Vanchai Sata ◽  
Prinya Chindaprasirt

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 220
Author(s):  
Monika Jaworska-Wędzińska ◽  
Iga Jasińska

Destruction of cement composites occurs due to the alternate or simultaneous effects of aggressive media, resulting in the destruction of concrete under the influence of chemical and physical factors. This article presents the results of changes in the measurement of linear strains of samples and changes in the microstructure of cement after 30 freezing and thawing cycles and immersed in 5% sodium sulfate solution. The compressive strengths ratios were carried out at the moment when the samples were moved to the sulfate solution after 30 cycles and at the end of the study when the samples showed visual signs of damage caused by the effect of 5% Na2SO4. The composition of the mixtures was selected based on the Gibbs triangle covering the area up to 40% replacement of Portland cement with low and high-calcium fly ashes or their mixture. Air-entrained and non-air entrained mortars were made of OPC, in which 20%, 26.6%, and 40% of Portland cement were replaced with low and/or high-calcium fly ash. Initial, freezing and thawing cycles accelerated the destruction of non- air-entrained cement mortars immersed in 5% sodium sulfate solution. The sulfate resistance, after the preceding frost damage, decreased along with the increase in the amount of replaced fly ash in the binder. Air-entrained mortars in which 20% of cement was replaced with high-calcium fly ash showed the best resistance to the action of sodium sulfate after 30 freezing and thawing cycles.


2015 ◽  
Vol 41 (4) ◽  
pp. 1263-1271 ◽  
Author(s):  
Tanakorn Phoo-ngernkham ◽  
Vanchai Sata ◽  
Sakonwan Hanjitsuwan ◽  
Charoenchai Ridtirud ◽  
Shigemitsu Hatanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document