Coupled Effect of Coarse Aggregate Type and Silica Fume on Creep Coefficients of High-Strength Concrete

2016 ◽  
Vol 28 (12) ◽  
pp. 04016159 ◽  
Author(s):  
Ahmed B. Shuraim ◽  
Fahid Aslam ◽  
Raja Rizwan Hussain ◽  
Abdulrahman M. Alhozaimy
2021 ◽  
Author(s):  
Sathyakumar N ◽  
Arun M ◽  
Arunachalam N

Abstract This experimental investigation is aimed to develop an ultra-high strength concrete with minimum of 100 MPa as compressive strength.In order to obtain this, twenty different concrete mixes have been tried, using cement, river sand, coarse aggregate, water, silica fume and super plasticizer. During the preparation of trial mixes of concrete, the water / binder ratio of 0.2, silica fume of 10% to the weight of cement, super plasticizer of 10 litres per cubic metre of concrete and coarse aggregate of 1000 kg/m3 were kept as constant. The amount of cement content (as 600-, 650-, 700-, 750- and 800 kg/m3) and the fine aggregate content (as 500-, 600-, 700- and 800 kg/m3) was varied. Totally 300 specimens were cast and tested in this investigation.The100 x 100 x 100 mm size of cubes, 150 x 300 mm size of cylinders, 100 x 100 x 500 mm size of prisms, 100 x 200 mm size of cylinders, 60 x 100 mm size of cylinders were used to test compressive, split tensile, flexural strength, chloride penetration and water penetration tests respectively at the age of 7-, 14- and 28 days. Based on the test results, a suitable mix proportion to produce an ultra-high strength concrete has been identified. Subsequently, from this investigation, the maximum cube compressive strength of 130 MPa, split tensile strength of 6.94 MPa, flexural strength of 21.39 MPa, chloride penetration 36 Coulombs which is lesser than 100 and sorptivity coefficient valueof 0.582 has been achieved.


2014 ◽  
Vol 605 ◽  
pp. 147-150
Author(s):  
Seong Uk Hong ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

This study used the ultrasonic pulse velocity method, one of the non-destructive test methods that does not damage the building for maintenance of to-be-constructed concrete structures using recycled aggregates in order to estimate the compressive strength of high strength concrete structure using recycled coarse aggregate and provide elementary resources for technological establishment of ultrasonic pulse velocity method. 200 test pieces of high strength concrete 40, 50MPa using recycled coarse aggregate were manufactured by replacement rates (0, 30, 50, 100%) and age (1, 7, 28, 180days), and air curing was executed to measure compressive strength and wave velocity. As the result of compressive strength measurement, the one with age of 180day and design strength of 40MPa was 43.69MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 42.82, 41.22, 37.35MPa, and 50MPa was 52.50MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 49.02, 46.66, 45.30MPa, and while it could be seen that the test piece substituted with recycled aggregate was found to have lower strength than the test piece with natural aggregate only, but it still reached the design strength to a degree. The correlation of compressive strength and ultrasonic pulse velocity was found and regression analysis was conducted. The estimation formula for compressive strength of high strength concrete using recycled coarse aggregate was found to be Fc=0.069Vp4.05, R2=0.66


This paper aimed to investigate the mechanical characteristics of HSC of M60 concrete adding 25% of fly ash to cement and sand and percentage variations of silica fumes 0%,5% and 10% to cement with varying sizes of 10mm,6mm,2mm and powder of granite aggregate with w/c of 0.32. Specimens are tested for compressive strength using 10cm X 10cmX10cm cubes for 7,14,28 days flexural strength was determined by using 10cmX10cmX50cm beam specimens at 28 days and 15cm diameter and 30cm height cylinder specimens at 28 days using super plasticizers of conplast 430 as a water reducing agent. In this paper the experimental set up is made to study the mechanical properties of HSC with and without coarse aggregate with varying sizes as 10mm, 6mm, 2mm and powder. Similarly, the effect of silica fume on HSC by varying its percentages as 0%, 5% and 10% in the mix studied. For all mixes 25% extra fly ash has been added for cement and sand.


2017 ◽  
Vol 22 (5) ◽  
pp. 1816-1826 ◽  
Author(s):  
Piotr Smarzewski ◽  
Danuta Barnat-Hunek ◽  
Walery Jezierski

Sign in / Sign up

Export Citation Format

Share Document