Engineering Properties of Ambient Cured Alkali-Activated Fly Ash–Slag Concrete Reinforced with Different Types of Steel Fiber

2018 ◽  
Vol 30 (7) ◽  
pp. 04018142 ◽  
Author(s):  
Nabeel A. Farhan ◽  
M. Neaz Sheikh ◽  
Muhammad N. S. Hadi
Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Chan-Yi Lin ◽  
Tai-An Chen

The compressive strengths of fly ash-based alkali-activated materials (AAM), produced using various activators of only sodium hydroxide, were measured. Fly ash-based AAM specimens, produced by mixing different kinds of fly ash and ground granulated blast-furnace slag (GGBFs) with an activator containing only sodium hydroxide, were cured at ambient temperature, and then placed in air for different numbers of days. The short- and long-term compressive strengths and shrinkage of fly ash-based AAM were measured and compared to one another. The effects of type of fly ash, alkali-equivalent content, GGBFs replace percentage, and ages on the compressive strengths and shrinkage of fly ash-based AAM were investigated. Even when different fly ash was used as the raw material for AAM, a similar compressive strength can be achieved by alkali-equivalent content, GGBFs replaces percentage. However, the performance of shrinkage due to different types of fly ash differed significantly.


2019 ◽  
Vol 11 (5) ◽  
pp. 1283 ◽  
Author(s):  
Peng Xu ◽  
Qingliang Zhao ◽  
Wei Qiu ◽  
Yan Xue ◽  
Na Li

Alkali-activated materials (AAM) are widely applied in the field of building materials and civil engineering to substitute cement materials. This study used two types of municipal solid waste incineration fly ash (MSWI-FA): grate-firing fly ash (GFFA) and fluidized bed fly ash (FBFA) as brick raw materials. Various weight ratio of 20%, 30%, and 40% GFFA and FBFA were added to coal fly ash (CFA), GGBFs (Ground Granulated Blast-Furnace Slag), and an alkali-activating reagent to produce alkali-activated bricks. Microstructure and crystalline phase composition were observed to analyze their compressive strength, and a leaching test was used to prove the material’s safety for the environment. It can be seen from the results of this study that the alkali-activated bricks containing FBFA had higher compressive strength than those containing GFFA in the same amount. Considering the engineering properties, the alkali-activated bricks containing FBFA are more suitable to be used as building materials. The difference in the compressive strength resulted from the large amount of calcium compounds and chloride salts present in the GFFA. From SEM analysis, it was observed that there was a large number of pores in the microstructure. It was also found from the results of XRD that the bricks containing GFFA contained a large amount of chloride salt. From the results of the two leaching tests, it was found that the amounts of six heavy metals detected in the leachates of the bricks in this study met the corresponding regulation standards. This described MSWI-FA is suitable for use as alkali-activated material, and its products have potential to be commercially used in the future.


2014 ◽  
Vol 60 (1) ◽  
pp. 55-75 ◽  
Author(s):  
P. Gomathi ◽  
A. Sivakumar

Abstract This study explores the influence of alkali activators on the initiation of polymerization reaction of alumino-silicate minerals present in class-F fly ash material. Different types of fly ash aggregates were produced with silicate rich binders (bentonite and metakaolin) and the effect of alkali activators on the strength gain properties were analyzed. A comprehensive examination on its physical and mechanical properties of the various artificial fly ash aggregates has been carried out systematically. A pelletizer machine was fabricated in this study to produce aggregate pellets from fly ash. The efficiency and strength of pellets was improved by mixing fly ash with different binder materials such as ground granulated blast furnace slag (GGBS), metakaolin and bentonite. Further, the activation of fl y ash binders was done using sodium hydroxide for improving its binding properties. Concrete mixes were designed and prepared with the different fly ash based aggregates containing different ingredients. Hardened concrete specimens after sufficient curing was tested for assessing the mechanical properties of different types concrete mixes. Test results indicated that fly ash -GGBS aggregates (30S2-100) with alkali activator at 10M exhibited highest crushing strength containing of 22.81 MPa. Similarly, the concrete mix with 20% fly ash-GGBS based aggregate reported a highest compressive strength of 31.98 MPa. The fly ash based aggregates containing different binders was found to possess adequate engineering properties which can be suggested for moderate construction works.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Tan Chien Yet ◽  
R. Hamid ◽  
Mudiono Kasmuri

The addition of steel fibers into concrete mix can significantly improve the engineering properties of concrete. The mechanical behaviors of steel fiber reinforced high-performance concrete with fly ash (SFRHPFAC) are studied in this paper through both static compression test and dynamic impact test. Cylindrical and cube specimens with three volume fractions of end-hooked steel fibers with volume fraction of 0.5%, 1.0%, and 1.5% (39.25, 78.50, and 117.75 kg/m3) and aspect ratio of 64 are used. These specimens are then tested for static compression and for dynamic impact by split Hopkinson pressure bar (SHPB) at strain rate of 30–60 s−1. The results reveal that the failure mode of concrete considerably changes from brittle to ductile with the addition of steel fibers. The plain concrete may fail under low-strain-rate single impact whereas the fibrous concrete can resist impact at high strain rate loading. It is shown that strain rate has great influence on concrete strength. Besides, toughness energy is proportional to the fiber content in both static and dynamic compressions.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 327
Author(s):  
Hilal El-Hassan ◽  
Abdalla Hussein ◽  
Jamal Medljy ◽  
Tamer El-Maaddawy

This study evaluates the performance of alkali-activated slag-fly ash blended concrete made with recycled concrete aggregates (RCA) and reinforced with steel fibers. Two blends of concrete with ground granulated blast furnace slag-to-fly ash ratios of 3:1 and 1:1 were used. Natural aggregates were substituted with RCA, while macro steel fibers with 35 mm of length and aspect ratio of 65 were incorporated in RCA-based mixtures at various volume fractions. Fine aggregates were in the form of desert dune sand. Mechanical and durability characteristics were investigated. Experimental results revealed that RCA replacement decreased the compressive strength of plain concrete mixtures with more pronounced reductions being perceived at higher replacement percentages. Mixtures made with 30%, 70%, and 100% RCA could be produced with limited loss in the design compressive strength upon incorporating 1%, 2%, and 2% steel fibers, by volume, respectively. In turn, splitting tensile strength was comparable to the NA-based control while adding at least 1% steel fiber, by volume. Moreover, higher water absorption and capillary sorptivity and lower ultrasonic pulse velocity, bulk resistivity, and abrasion resistance were reported during RCA replacement. Meanwhile, incorporation of steel fibers densified the concrete and enhanced its resistance to abrasive forces, water permeation, and water transport. Analytical regression models were developed to correlate hardened concrete properties to the 28-day cylinder compressive strength.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2121 ◽  
Author(s):  
Marija Nedeljković ◽  
Zhenming Li ◽  
Guang Ye

The engineering properties of alkali activated materials (AAMs) mainly depend on the constituent materials and their mixture proportions. Despite many studies on the characterization of AAMs, guidelines for mixture design of AAMs and their applications in engineering practice are not available. Extensive experimental studies are still necessary for the investigation of the role of different constituents on the properties of AAMs. This paper focuses on the development of alkali-activated fly ash (FA) and ground granulated blast furnace slag (GBFS) paste mixtures in order to determine their suitability for making concretes. In particular, the influence of the GBFS/FA ratio and liquid-to-binder (l/b) ratio on the slump, setting, strength, and autogenous shrinkage of the alkali activated pastes is studied.It is shown that fresh properties largely depend on the type of precursor (GBFS or FA). The slump and setting time of GBFS-rich pastes was significantly reduced. These pastes also have higher compressive strength than FA-rich pastes. The study identifies important practical challenges for application of the studied mixtures, such as the behavior of their flexural strength and high amplitudes of autogenous shrinkage of GBFS-rich mixtures. Finally, the optimum GBFS/FA ratio for their future use in concretes is recommended.


Sign in / Sign up

Export Citation Format

Share Document