Coupled Effects of Confining Pressure and Loading Rate on the Mechanical Behavior of Plastic Concrete

2020 ◽  
Vol 32 (10) ◽  
pp. 04020292
Author(s):  
Reza Nateghi ◽  
Kamran Goshtasbi ◽  
Hamid Reza Nejati
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
William M. Kibikas ◽  
Stephen J. Bauer

The stress history of rocks in the subsurface affects their mechanical and petrophysical properties. Rocks can often experience repeated cycles of loading and unloading due to fluid pressure fluctuations, which will lead to different mechanical behavior from static conditions. This is of importance for several geophysical and industrial applications, for example, wastewater injection and reservoir storage wells, which generate repeated stress perturbations. Laboratory experiments were conducted with Castlegate sandstone to observe the effects of different cyclic pressure loading conditions on a common reservoir analogue. Each sample was hydrostatically loaded in a triaxial cell to a low effective confining pressure, and either pore pressure or confining pressure was cycled at different rates over the course of a few weeks. Fluid permeability was measured during initial loading and periodically between stress cycles. Samples that undergo cyclic loading experience significantly more inelastic (nonrecoverable) strain compared to samples tested without cyclic hydrostatic loading. Permeability decreases rapidly for all tests during the first few days of testing, but the decrease and variability of permeability after this depend upon the loading conditions of each test. Cycling conditions do affect the mechanical behavior; the elastic moduli decrease with the increasing loading rate and stress cycling. The degree of volumetric strain induced by stress cycles is the major control on permeability change in the sandstones, with less compaction leading to more variation from measurement to measurement. The data indicate that cyclic loading degrades permeability and porosity more than static conditions over a similar period, but the petrophysical properties are dictated more by the hydrostatic loading rate rather than the total length of time stress cycling is imposed.


2015 ◽  
Vol 49 (6) ◽  
pp. 2155-2163 ◽  
Author(s):  
Davood Fereidooni ◽  
Gholam Reza Khanlari ◽  
Mojtaba Heidari ◽  
Ali Asghar Sepahigero ◽  
Amir Pirooz Kolahi-Azar

Author(s):  
Peng Huang ◽  
Jixiong Zhang ◽  
Ntigurirwa Jean Damascene ◽  
Zhaojun Wang ◽  
Meng Li

2011 ◽  
Vol 38 (5) ◽  
pp. 637-640 ◽  
Author(s):  
Yanghui Li ◽  
Yongchen Song ◽  
Feng Yu ◽  
Weiguo Liu ◽  
Rui Wang

1981 ◽  
Vol 21 (01) ◽  
pp. 43-50 ◽  
Author(s):  
Thomas Lindsay Blanton

Abstract Compression tests with and without pore pressure have been run on Danian and Austin chalks. The rocks yielded under increasing hydrostatic stress by pore collapse. The same effect was produced by holding a constant hydrostatic stress and reducing the pore pressure. This pore collapse reduced the permeability. The ultimate strength of the chalks increased with increasing confining pressure. The yield strength increased initially, but at higher confining pressures it decreased until it yielded under hydrostatic stress. Relatively high pore-pressure gradients developed when the chalks. were compressed. In these situations, the mechanical behavior tended to be a function of the average effective stresses. Introduction Hydrocarbons have been found in chalks in the North Sea, the Middle East, the Gulf Coast and midcontinent regions of the U.S., and the Scotian Shelf of Canada1; however, problems have been encountered in developing these reservoirs efficiently because of the unusual mechanical behavior of chalk. Chalks have three characteristics that interact to differentiate their behavior from most reservoir rocks. High Porosity. Porosities may be as high as 80070.1,2 Effects of burial and pore-water chemistry can reduce this porosity to less than 1%, but notable exceptions occur in areas of early oil placement and overpressuring where porosities in excess of 40% have been reported.2,3 Low Permeability Regardless of porosity, chalks have low permeabilities, usually around 1 to 10 md. Soft Matrix. Chalks are predominantly calcite, which has a hardness of 3 on Mohr's scale. These properties create problems in the following areas of reservoir development. Drilling. High porosity combined with a soft matrix material makes for a relatively weak and ductile rock. Efficient drilling involves chipping the rock and ductile behavior inhibits this process. Stimulation. The combination of high porosity and low permeability makes chalks prime candidates for stimulation by hydraulic fracturing or acid fracturing. The best production often is associated with natural fractures.2,3 Man-made fractures could open up new areas to production, but again ductile behavior inhibits the fracturing process. Production. In many cases permeabilities are low enough to trap pore fluids and cause abnormally high pore pressures.2 These high pore pressures help maintain the high porosities at depth by supporting some of the weight of the overburden. As the field is produced and the pore pressure lowered, some of the weight will shift to the soft matrix. The result may be pore collapse and reduction of an already low permeability. These problems indicate a need for basic information on the mechanical behavior of chalks. Determining methods of enhancing brittle behavior could lead to improved drilling and stimulation techniques. The ability to predict and prevent pore collapse could increase ultimate recovery. The approach taken in this study was experimental. Specimens of chalk were subjected to different combinations of stress and pore pressure in the laboratory, and the resulting deformations were measured.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yue Qiang ◽  
Yulong Chen

In order to study the mechanical behavior of lime-treated soil under different loading rates, a series of monotonous three-axial compression tests are carried out under different lime contents, different loading rates, and different curing periods. The test results indicate that the lime content can significantly improve the mechanical behaviors of soil, such as shear strength and elastic modulus. On the other hand, three-axial compression test of soil is carried out under the loading rate ranging from 0.1%/min to 8%/min. Experimental results indicate that the mechanical behavior of lime-treated soil is sensitive to loading rate. Besides, the corresponding relationship between internal friction angle, cohesion, lime content, and loading rate is discussed. The results indicate that the loading rate almost has no influence on internal friction angle but significant influence on lime content. Cohesion is affected by lime content and loading rate. Shear strength, elastic modulus, and cohesion all increase with the increase of loading rate. Longer curing period is associated with greater parameter value. Shear strength, elastic modulus, and internal friction angle all firstly increase and then decrease when lime content increases, which all reach the maximum at 6%.


Sign in / Sign up

Export Citation Format

Share Document