scholarly journals Backbone Model for Confined Masonry Walls for Performance-Based Seismic Design

2009 ◽  
Vol 135 (6) ◽  
pp. 644-654 ◽  
Author(s):  
Zahra Riahi ◽  
Kenneth J. Elwood ◽  
Sergio M. Alcocer
2016 ◽  
Vol 12 (1) ◽  
pp. 36-46
Author(s):  
Radu Petrovici

Abstract Experience of designing buildings with structural masonry walls and masonry non-structural elements using Codes CR 6-2006 [15a] and P 100-1/2006 [16a], that were developed based on design principles and rules of Eurocodes adopted in Romania SR EN 1996-1-1[13] and SR EN 1998-1[14], revealed the need of some additions and corrections of texts. These interventions made by developing Codes CR 6 -2013[15] and P 100-1/2013[16], which we can characterize synthetically as follows: - Are aligned with the Structural Eurocodes principles but correcting some identified deficiencies. - Resume some previous provisions of national regulations that lack in Eurocodes - Introduce the results of recent theoretical and experimental research - Provide practical application rules, simple and explicit, accompanied by “Commentary” and “Design examples” The communication exposes and justifies synthetically the following new approaches introduced in the 2013 editions of the two regulations: Modification of the methodology for the partial safety factors (γM) and for establishing the minimum necessary strength values of masonry. Additions and explanations of the design rules for unreinforced and confined masonry subjected to combined axial compression and flexure and to shear loading.


2010 ◽  
Vol 163-167 ◽  
pp. 1757-1761
Author(s):  
Yong Le Qi ◽  
Xiao Lei Han ◽  
Xue Ping Peng ◽  
Yu Zhou ◽  
Sheng Yi Lin

Various analytical approaches to performance-based seismic design are in development. Based on the current Chinese seismic codes,elastic capacity calculation under frequent earthquake and ductile details of seismic design shall be performed for whether seismic design of new buildings or seismic evaluation of existing buildings to satisfy the seismic fortification criterion “no damage under frequent earthquake, repairable under fortification earthquake, no collapse under severe earthquake”. However, for some special buildings which dissatisfy with the requirements of current building codes, elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures, in which story drift ratio and deformation of components are used as performance targets. By combining the features of Chinese seismic codes, a set of performance-based seismic design method is established for reinforced concrete structures. Different calculation methods relevant to different seismic fortification criterions are adopted in the proposed method, which solve the problems of seismic evaluation for reinforced concrete structures.


2021 ◽  
pp. 875529302098196
Author(s):  
Siamak Sattar ◽  
Anne Hulsey ◽  
Garrett Hagen ◽  
Farzad Naeim ◽  
Steven McCabe

Performance-based seismic design (PBSD) has been recognized as a framework for designing new buildings in the United States in recent years. Various guidelines and standards have been developed to codify and document the implementation of PBSD, including “ Seismic Evaluation and Retrofit of Existing Buildings” (ASCE 41-17), the Tall Buildings Initiative’s Guidelines for Performance-Based Seismic Design of Tall Buildings (TBI Guidelines), and the Los Angeles Tall Buildings Structural Design Council’s An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region (LATBSDC Procedure). The main goal of these documents is to regularize the implementation of PBSD for practicing engineers. These documents were developed independently with experts from varying backgrounds and organizations and consequently have differences in several degrees from basic intent to the details of the implementation. As the main objective of PBSD is to ensure a specified building performance, these documents would be expected to provide similar recommendations for achieving a given performance objective for new buildings. This article provides a detailed comparison among each document’s implementation of PBSD for reinforced concrete buildings, with the goal of highlighting the differences among these documents and identifying provisions in which the designed building may achieve varied performance depending on the chosen standard/guideline. This comparison can help committees developing these documents to be aware of their differences, investigate the sources of their divergence, and bring these documents closer to common ground in future cycles.


2021 ◽  
Vol 237 ◽  
pp. 112043
Author(s):  
Jianian Wen ◽  
Qiang Han ◽  
Yazhou Xie ◽  
Xiuli Du ◽  
Jian Zhang

2021 ◽  
Vol 91 (2) ◽  
pp. 56-63
Author(s):  
Atila Zekioglu ◽  
Aysegul Gogus ◽  
Serdar Binzet ◽  
Kermin Chok

2012 ◽  
Vol 28 (4) ◽  
pp. 1549-1568 ◽  
Author(s):  
Shun-Hao Ni ◽  
De-Yi Zhang ◽  
Wei-Chau Xie ◽  
Mahesh D. Pandey

Uniform hazard spectra (UHS) have been used as design earthquakes in several design codes. However, as the results from scalar probabilistic seismic hazard analysis (PSHA), UHS do not provide knowledge about the simultaneous occurrence of spectral accelerations at multiple vibration periods. The concept of a single “design earthquake” is then lost on a UHS. In this study, a vector-valued PSHA combined with scalar PSHA is applied to establish an alternative design spectrum, named vector-valued UHS (VUHS). Vector-valued seismic hazard deaggregation (SHD) is also performed to determine the design earthquake in terms of magnitude, distance, and occurrence rate for the VUHS. The proposed VUHS preserves the essence of the UHS and can also be interpreted as a single design earthquake. To simplify the procedure for generating the VUHS, so that they can be easily incorporated into performance-based seismic design, an approximate method is also developed.


2017 ◽  
Vol 20 (11) ◽  
pp. 1632-1643 ◽  
Author(s):  
Masoud Amouzadeh Tabrizi ◽  
Masoud Soltani

This article focuses on the experimental and analytical investigations of masonry walls surrounded by tie-elements under in-plane loads. The experimental results of an unconfined and a confined masonry wall, tested under reversed cyclic lateral loads, are presented. For numerical study, a micro-modeling strategy, using smeared-crack-based approach, is adopted. In order to validate the numerical approach, experimental test results and data obtained from the literature are used, and through a systematic parametric study, the influence of adjoining walls and number of tie-columns on the seismic behavior of confined masonry panels is numerically assessed and a simple but rational method for predicting the nonlinear behavior of these structures is proposed.


Sign in / Sign up

Export Citation Format

Share Document