Seismic Performance of a Long-Span Cable-Stayed Bridge under Spatially Varying Bidirectional Spectrum-Compatible Ground Motions

2021 ◽  
Vol 147 (4) ◽  
pp. 04021015
Author(s):  
Taeyong Kim ◽  
Oh-Sung Kwon ◽  
Junho Song
2012 ◽  
Vol 246-247 ◽  
pp. 131-135
Author(s):  
Bao Fu Wang ◽  
Zhong Ren Feng ◽  
Xiong Jiang Wang ◽  
Bai Ben Chen

In this paper, non-uniform dynamic analysis of a cable-stayed bridge is carried out using the large mass method. The Ed Yangtze River highway bridge, constructed in Hubei province, is chosen as a numerical example. In the non-uniform dynamic analysis, various wave velocities are used for the travelling ground motion. Displacements and internal forces solutions obtained for the spatially varying ground motions are compared with those of the uniform excitation. It is observed that the velocity of the ground motion greatly influences the response of the bridge and the variability of the ground motions should be included in the time-history analysis of cable-stayed bridges.


2014 ◽  
Vol 875-877 ◽  
pp. 998-1002
Author(s):  
Wei Bing Luo ◽  
Ji Ming Fan ◽  
Ji Lv ◽  
Li Ya Zhang ◽  
Cui Cui Wu

The seismic responses under the action of far-fault and near-fault ground motions of the bridge tower structure of the long-span cable-stayed bridge are numerically discussed by means of the model of the bottom consolidation of the column. The results show that the responses of tower of the cable-stayed bridge correlate well with the properties of the ground motions. The seismic responses of the model have much larger values under the near-fault velocity pulse-like ground motions than those of the counterpart. The frequency of system reduces as the flexibility of structure decreases because of the rigid foundation; The displace response of tower shows that the rigid foundation has little influence on the seismic response of the cable-stayed bridge, while the acceleration response of the tower implies that rigid foundation has adverse effect. Thus, consideration of the soil-pile-superstructure interaction can be meaningful both in theory and reality during the seismic design of long-span cable-stayed bridge structure.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Jin Zhang ◽  
Ke-jian Chen ◽  
Neng-pan Ju ◽  
Shi-xiong Zheng ◽  
Hong-yu Jia ◽  
...  

To study the nonlinear seismic behavior and seismic resistance of the long-span cable-stayed bridges subjected to earthquakes, the multidimensional and multisupported artificial ground motions are synthesized first based on the in situ site conditions of the bridge considering the coherent and traveling wave effects. Then, considering the material nonlinearity of the cable-stayed bridge, a 3D finite element model is established based on the OpenSees platform, and the nonlinear seismic response analysis of the bridge is carried out under the synthetic artificial ground motions. The nonlinear seismic response of main bridge components such as piers, towers, bearings, and cables is analyzed, and key conclusions and observations are drawn.


2016 ◽  
Vol 16 (05) ◽  
pp. 1550005 ◽  
Author(s):  
Yongle Li ◽  
Siyu Zhu ◽  
C. S. Cai ◽  
Cheng Yang ◽  
Shizhong Qiang

In order to evaluate the dynamic response of the train running on long-span cable-stayed bridges under uniform seismic excitations, a time-domain framework of analysis for the train–bridge system is established. The rail irregularities are treated as internal excitation and seismic loads as external excitation considering the inertia forces induced by the 3D seismic waves. The vehicles are modeled as mass-spring-damper systems, and the cable-stayed railway bridge is simulated by finite elements. A comprehensive analysis of the train–bridge system subjected to earthquake is conducted, focused on the effect of seismic ground motions on the dynamic response of the running train. Four kinds of seismic waves, each with three components, are simulated, with their spectral characteristics taken into account. To consider the stochastic characteristic of actual seismic waves, the effect of the incident angle and occurrence time of earthquakes on the bridge and vehicles is analyzed. Moreover, the earthquakes with various occurrence probability levels are also studied and the safety of the train running under the seismic action is evaluated, which may be used as the operation reference for the railway authority. The results demonstrate that the seismic ground motions have significant effects on the dynamic response of railway vehicles running on the long-span cable-stayed bridge under various spectrum characteristics, incident angles, occurrence times, and occurrence probabilities.


2011 ◽  
Vol 71-78 ◽  
pp. 3841-3844
Author(s):  
Guo Hui Zhao ◽  
Wen Hua Zhang ◽  
Jian Hui Zhao

Long period ground motion has great influence on long period structures such as large oil tank, high-rise building and long span bridge. In this paper, a long span cable-stayed bridge is taken as an example to study the seismic response of long period structure under long period ground motions and conventional ground motions by using nonlinear dynamic time history method. It is shown that although the peak acceleration of the long period ground motions are no more than half of conventional ground motions, the displacement and force response of the bridge at key points under long period ground motions are much greater than that of conventional ground motions. Constraint cables and fluid viscous dampers are used to reduce in the influence of long period ground motion of the bridge, and the effects of the two countermeasures are also analyzed in this paper. The results show that constraint cables have unstable effect and even negative effect under long period ground motion. While fluid viscous dampers have stable effect under both long period ground motion and conventional ground motion with proper damping parameters.


Sign in / Sign up

Export Citation Format

Share Document