A Real-Time Control Strategy for Operating the Milwaukee Metropolitan Sewerage District (MMSD) Conveyance and Storage System

Author(s):  
Eric D. Loucks ◽  
Elizabeth F. Locke ◽  
Steven R. Heinz ◽  
Z. Cello Vitasovic
2021 ◽  
Vol 13 (16) ◽  
pp. 8693
Author(s):  
Ahmed Al Amerl ◽  
Ismail Oukkacha ◽  
Mamadou Baïlo Camara ◽  
Brayima Dakyo

In this paper, an effective control strategy is proposed to manage energy distribution from fuel cells and batteries for hybrid electric boat applications. The main objectives of this real-time control are to obtain fast current tracking for the batteries’ system, the DC bus voltage stability by using a fuel cell, and energy load distribution for a hybrid electric boat under varying demand conditions. The proposed control strategy is based on a combination of frequency approach and current/voltage control of interleaved boost converters to reduce the hydrogen consumption by the fuel cell and improve the quality of energy transfer. The frequency approach was dedicated to managing the DC power-sharing between the load, the fuel cell, and the batteries’ storage system by extracting the power references. The closed loop control system utilized to control the energy is based on the DC/DC converters. The performance evaluation of the proposed control strategy has been tested through a real-time experimental test bench based on a dSPACE board (DS1104).


Author(s):  
Weiwei Yang ◽  
Jiejunyi Liang ◽  
Jue Yang ◽  
Nong Zhang

Considering the energy consumption and specific performance requirements of mining trucks, a novel uninterrupted multi-speed transmission is proposed in this paper, which is composed of a power-split device, and a three-speed lay-shaft transmission with a traction motor. The power-split device is adapted to enhance the efficiency of the engine by adjusting the gear ratio continuously. The three-speed lay-shaft transmission is designed based on the efficiency map of traction motor to guarantee the drivability. The combination of the power-split device and three-speed lay-shaft transmission can realize uninterrupted gear shifting with the proposed shift strategy, which benefits from the proposed adjunct function by adequately compensating the torque hole. The detailed dynamic models of the system are built to verify the effectiveness of the proposed shift strategy. To evaluate the maximum fuel efficiency that the proposed uninterrupted multi-speed transmission could achieve, dynamic programming is implemented as the baseline. Due to the “dimension curse” of dynamic programming, a real-time control strategy is designed, which can significantly improve the computing efficiency. The simulation results demonstrate that the proposed uninterrupted multi-speed transmission with dynamic programming and real-time control strategy can improve fuel efficiency by 11.63% and 8.51% compared with conventional automated manual transmission system, respectively.


2018 ◽  
Vol 165 (9) ◽  
pp. E366-E374 ◽  
Author(s):  
Hai-yin Xu ◽  
Zhao-hui Yang ◽  
Yuan-ling Luo ◽  
Ping Wang ◽  
Jing Huang ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1098 ◽  
Author(s):  
Minsoo Kim ◽  
Kangsan Kim ◽  
Hyungeun Choi ◽  
Seonjeong Lee ◽  
Hongseok Kim

Recent advances in battery technologies have reduced the financial burden of using the energy storage system (ESS) for customers. Peak cut, one of the benefits of using ESS, can be achieved through proper charging/discharging scheduling of ESS. However, peak cut is sensitive to load-forecasting error, and even a small forecasting error may result in the failure of peak cut. In this paper, we propose a two-phase approach of day-ahead optimization and real-time control for minimizing the total cost that comes from time-of-use (TOU), peak load, and battery degradation. In day-ahead optimization, we propose to use an internalized pricing to manage peak load in addition to the cost from TOU. The proposed method can be implemented by using dynamic programming, which also has an advantage of accommodating the state-dependent battery degradation cost. Then in real-time control, we propose a concept of marginal power to alleviate the performance loss incurred from load-forecasting error and mimic the offline optimal battery scheduling by learning from load-forecasting error. By exploiting the marginal power, real-time ESS charging/discharging power gets close to the offline optimal battery scheduling. Case studies show that under load-forecasting uncertainty, the peak power using the proposed method is only 22.4% higher than the offline optimal peak power, while the day-ahead optimization has 76.8% higher peak power than the offline optimal power. In terms of profit, the proposed method achieves 77.0% of the offline optimal profit while the day-ahead method only earns 19.6% of the offline optimal profit, which shows the substantial improvement of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document