Groundwater Flow in the Edwards Aquifer: Comparison of Groundwater Modeling and Dye Trace Results

Author(s):  
Brian A. Smith ◽  
Brian B. Hunt ◽  
Geary M. Schindel
2017 ◽  
Author(s):  
Miao Jing ◽  
Falk Heße ◽  
Wenqing Wang ◽  
Thomas Fischer ◽  
Marc Walther ◽  
...  

Abstract. Most of the current large scale hydrological models do not contain a physically-based groundwater flow component. The main difficulties in large-scale groundwater modeling include the efficient representation of unsaturated zone flow, the characterization of dynamic groundwater-surface water interaction and the numerical stability while preserving complex physical processes and high resolution. To address these problems, we propose a highly-scalable coupled hydrologic and groundwater model (mHM#OGS) based on the integration of two open-source modeling codes: the mesoscale hydrologic Model (mHM) and the finite element simulator OpenGeoSys (OGS). mHM#OGS is coupled using a boundary condition-based coupling scheme that dynamically links the surface and subsurface parts. Nested time stepping allows smaller time steps for typically faster surface runoff routing in mHM and larger time steps for slower subsurface flow in OGS. mHM#OGS features the coupling interface which can transfer the groundwater recharge and river baseflow rate between mHM and OpenGeoSys. Verification of the coupled model was conducted using the time-series of observed streamflow and groundwater levels. Moreover, we force the transient model using groundwater recharge in two scenarios: (1) spatially variable recharge based on the mHM simulations, and (2) spatially homogeneous groundwater recharge. The modeling result in first scenario has a slightly higher correlation with groundwater head time-series, which further validates the plausibility of spatial groundwater recharge distribution calculated by mHM in the mesocale. The statistical analysis of model predictions shows a promising prediction ability of the model. The offline coupling method implemented here can reproduce reasonable groundwater head time series while keep a desired level of detail in the subsurface model structure with little surplus in computational cost. Our exemplary calculations show that the coupled model mHM#OGS can be a valuable tool to assess the effects of variability in land surface heterogeneity, meteorological, topographical forces and geological zonation on the groundwater flow dynamics.


2018 ◽  
Vol 10 (2) ◽  
pp. 243-248
Author(s):  
Lei Lu ◽  
Chunxue Liu ◽  
Gang Chen ◽  
Liang Guo

Abstract Numerous geological research studies and mining operations have proved that fracture is one of the important factors controlling groundwater flow, mineralization, and ore distribution in metallic deposits. Most current approaches to groundwater flow simulation of naturally fractured media rely on the calculation of equivalent permeability tensors from a discrete fracture network (DFN). This study is aimed at developing a rational two-dimensional DFN by GEOFRAC, a geostatistical method of fracture direction and locations of sample data from a tin mine in the Gaosong area, Gejiu city, southwest China, and utilizing 3,724 outcrop fractures sampled on the ground of mountain Gaosong. Principal inputs of the DFN are density, direction, and continuity of disks that constitute a fracture plane. Fractures simulated by GEOFRAC were validated in that their directions corresponded well with those of the sample fractures. The permeability tensor of each modeling grid was then calculated based on the fracture network constructed. The results showed that GEOFRAC is valuable for two-dimensional DFN modeling in mines and other fracture-controlled geological phenomena, such as groundwater flow and slope failure.


2017 ◽  
Vol 20 (1) ◽  
pp. 177-190
Author(s):  
Mohammad Moezzibadi ◽  
Isabelle Charpentier ◽  
Adrien Wanko ◽  
Robert Mosé

Abstract Mitigation measures may be used to prevent soil and water pollution from waste disposal, landfill sites, septic or chemical storage tanks. Among them, drains and impervious barriers may be set up. The efficiency of this technique can be evaluated by means of groundwater modeling tools. The groundwater flow and the leakage drain–aquifer interactions are implemented in a conforming finite element method (FEM) and a mixed hybrid FEM (MHFEM) in a horizontal two-dimensional domain modeling regional aquifer below chemical storage tanks. Considering the influence of uncertainties in the drain–aquifer exchange rate parameter and using an automatic differentiation (AD) tool, the aim of this paper is to carry out a sensitivity analysis with respect to the leakage coefficient for the piezometric head, velocity field, and streamlines to provide a new insight into groundwater waterbody exchanges. Computations are performed with both an ideal homogeneous hydraulic conductivity and a realistic heterogeneous one. The tangent linear codes are validated using Taylor tests performed on the head and the velocity field. The streamlines computed using AD are well approximated in comparison with the nondifferentiated codes. Piezometric head computed by the MHFEM is the more sensitive, particularly near to the drain, than the FEM one.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
N. Sundararajan ◽  
S. Sankaran

AbstractIn general, groundwater flow and transport models are being applied to investigate a wide variety of hydrogeological conditions besides to calculate the rate and direction of movement of groundwater through aquifers and confining units in the subsurface. Transport models estimate the concentration of a chemical in groundwater which requires the development of a calibrated groundwater flow model or, at a minimum, an accurate determination of the velocity and direction of groundwater flow that is based on field data. All the available hydrogeological, geophysical and water quality data in Musi basin, Hyderabad, India, were fed as input to the model to obtain the groundwater flow velocities and the interaction of surface water and groundwater and thereby seepage loss was estimated. This in turn paved the way to calculate the capacity of the storage treatment plants (STP) to be established at the inlets of six major lakes of the basin. The total dissolved solid was given as the pollutant load in the mass transport model, and through model simulation, its migration at present and futuristic scenarios was brought out by groundwater flow and mass transport modeling. The average groundwater velocity estimated through the flow model was 0.26 m/day. The capacities of STP of various lakes in the study area were estimated based on the lake seepage and evaporation loss. Based on the groundwater velocity and TDS as pollutant load in the lakes, the likely contamination from lakes at present and for the next 20 years was predicted.


2021 ◽  
pp. 125950
Author(s):  
Xin Dai ◽  
Yueqing Xie ◽  
Craig T. Simmons ◽  
Steve Berg ◽  
Yanhui Dong ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Padam Jee Omar ◽  
Shishir Gaur ◽  
P. K. S. Dikshit

AbstractEffective management of water resource is essential in arid and semi-arid areas of India. In Bihar, for drinking purpose humans, livestock is dependent on the groundwater as well as in agricultural areas groundwater plays an important role in irrigation directly or indirectly. There is rise in the groundwater demand due to rapid population increase and fast industrialization. To meet this groundwater demand, excessive withdrawal of groundwater is a point of concern due to limited storage of it. Assessment of the groundwater was done by preparing a numerical model of the groundwater flow. This model is capable of solving large groundwater problems and associated complexity with it. In this study, a transient multi-layered groundwater flow model was conceptualized and developed for the Koshi River basin. In north Bihar plains, the Koshi River is one of the biggest tributaries of the Ganga River system. Koshi originates from the lower part of Tibet and joins the Ganga River in Katihar district, Bihar, India. After model development, calibration of the model was also done, by considering three model parameters, to represent the actual field conditions. For validation of the model, fifteen observation wells have been selected in the area. With the help of observation well data, computed and observed heads were compared. Comparison results have been found to be encouraging and the computed groundwater head matched with the observed water head to a realistic level of accuracy. Developed groundwater model is used to predict the groundwater head and flow budget in the concerned area. The study revealed that groundwater modeling is an important method for knowing the behavior of aquifer systems and to detect groundwater head under different varying hydrological stresses. This type of study will be beneficial for the hydrologist and water resource engineers to predict the groundwater flow behavior, before implementing any project or to implement a correction scheme.


2017 ◽  
Author(s):  
Tedy Agung Cahyadi ◽  
Lilik Eko Widodo ◽  
Irwan Iskandar ◽  
Sukaerang ◽  
Suyono

Hydraulic conductivity property is very important for groundwater flow modeling. It can be gathered through packer test and slug test. The high cost of the operational implementation of these tests lead to the limited availability of observational-based distribution of hydraulic conductivity data. Highly fractured rocks in Grasberg open pit mining and surrounding of PT Freeport Indonesia (PTFI) result in fractured-groundwater-flow media. It is related to the complex geological structure and lithological condition. Groundwater modeling needs 3D distribution data such hydraulic conductivity (K). On previous research, hydraulic conductivity is distributed homogenyneously at each layer model. In this paper, under limited observational hydraulic conductivity, isotropic hydraulic conductivity will be modeled based on the HC-System approach and will be three-dimensionally distributed using Artificial Neural Network (ANN). HC-System approach will be developed according to the packer test and slug test measurement using geotechnical data from drilling such as Rock Quality Designation (RQD), Lithology Permeability Index (LPI), Depth Index (DI), and Gouge Content Index. HC-System approach will be resulted in isotropic distribution of hydraulic conductivity. It is then checked at some points by the packer tests and slug tests observational data. It is further very beneficial for modeling of groundwater distribution flow with the heterogeny hydraulic conductivity.


Sign in / Sign up

Export Citation Format

Share Document