scholarly journals Sensitivity of groundwater flow with respect to the drain–aquifer leakage coefficient

2017 ◽  
Vol 20 (1) ◽  
pp. 177-190
Author(s):  
Mohammad Moezzibadi ◽  
Isabelle Charpentier ◽  
Adrien Wanko ◽  
Robert Mosé

Abstract Mitigation measures may be used to prevent soil and water pollution from waste disposal, landfill sites, septic or chemical storage tanks. Among them, drains and impervious barriers may be set up. The efficiency of this technique can be evaluated by means of groundwater modeling tools. The groundwater flow and the leakage drain–aquifer interactions are implemented in a conforming finite element method (FEM) and a mixed hybrid FEM (MHFEM) in a horizontal two-dimensional domain modeling regional aquifer below chemical storage tanks. Considering the influence of uncertainties in the drain–aquifer exchange rate parameter and using an automatic differentiation (AD) tool, the aim of this paper is to carry out a sensitivity analysis with respect to the leakage coefficient for the piezometric head, velocity field, and streamlines to provide a new insight into groundwater waterbody exchanges. Computations are performed with both an ideal homogeneous hydraulic conductivity and a realistic heterogeneous one. The tangent linear codes are validated using Taylor tests performed on the head and the velocity field. The streamlines computed using AD are well approximated in comparison with the nondifferentiated codes. Piezometric head computed by the MHFEM is the more sensitive, particularly near to the drain, than the FEM one.

2021 ◽  
Vol 11 (6) ◽  
pp. 2448
Author(s):  
Alex Sendrós ◽  
Aritz Urruela ◽  
Mahjoub Himi ◽  
Carlos Alonso ◽  
Raúl Lovera ◽  
...  

Water percolation through infiltration ponds is creating significant synergies for the broad adoption of water reuse as an additional non-conventional water supply. Despite the apparent simplicity of the soil aquifer treatment (SAT) approaches, the complexity of site-specific hydrogeological conditions and the processes occurring at various scales require an exhaustive understanding of the system’s response. The non-saturated zone and underlying aquifers cannot be considered as a black box, nor accept its characterization from few boreholes not well distributed over the area to be investigated. Electrical resistivity tomography (ERT) is a non-invasive technology, highly responsive to geological heterogeneities that has demonstrated useful to provide the detailed subsurface information required for groundwater modeling. The relationships between the electrical resistivity of the alluvial sediments and the bedrock and the difference in salinity of groundwater highlight the potential of geophysical methods over other more costly subsurface exploration techniques. The results of our research show that ERT coupled with implicit modeling tools provides information that can significantly help to identify aquifer geometry and characterize the saltwater intrusion of shallow alluvial aquifers. The proposed approaches could improve the reliability of groundwater models and the commitment of stakeholders to the benefits of SAT procedures.


Author(s):  
Xabier Guinda ◽  
Araceli Puente ◽  
José A. Juanes ◽  
Francisco Royano ◽  
Felipe Fernández ◽  
...  

The high energy demand and the threat of climate change have led to a remarkable development of renewable energies, initially through technologies applied to the terrestrial environment and, recently, through the awakening of marine renewable energies. However, the development of these types of projects is often hampered by failure to pass the corresponding environmental impact assessment process. The complexity of working in the marine environment and the uncertainties associated with assessing the impacts of such projects make it difficult to carry out objective and precise environmental impact assessments. AMBEMAR-DSS seeks to establish a basis for understanding and agreement between the different stakeholders (project developers, public administrations, environmental organizations and the public in general), in order to find solutions that allow the development of marine renewable energies, minimizing their environmental cost. For this purpose, a DSS is proposed which, based on cartographic information and using objective and quantifiable criteria, allows comparative assessments and analyses between different project alternatives. The analytical procedures used by the system include, among others, hydrodynamic modeling tools and visual impact simulators. In addition, impacts on marine species are assessed taking into account intrinsic ecological and biological aspects. The magnitude of the impacts is quantified by means of fuzzy logic operations and the integration of all the elements is carried out by an interactive multi-criteria analysis. The results are shown in tables, graphs and figures of easy interpretation and can be also visualized geographically by means of a cartographic viewer. The system identifies the main impacts generated in the different phases of the project and allows establishing adequate mitigation measures in search of optimized solutions. The establishment of the assessment criteria has been based on the abundant, but dispersed, scientific literature on the various elements of the system and having the opinion of experts in the various fields. Nevertheless, the DSS developed constitutes a preliminary basis on which to build and improve a system with the input of researchers, promoters and experts from different disciplines.


2017 ◽  
Author(s):  
Miao Jing ◽  
Falk Heße ◽  
Wenqing Wang ◽  
Thomas Fischer ◽  
Marc Walther ◽  
...  

Abstract. Most of the current large scale hydrological models do not contain a physically-based groundwater flow component. The main difficulties in large-scale groundwater modeling include the efficient representation of unsaturated zone flow, the characterization of dynamic groundwater-surface water interaction and the numerical stability while preserving complex physical processes and high resolution. To address these problems, we propose a highly-scalable coupled hydrologic and groundwater model (mHM#OGS) based on the integration of two open-source modeling codes: the mesoscale hydrologic Model (mHM) and the finite element simulator OpenGeoSys (OGS). mHM#OGS is coupled using a boundary condition-based coupling scheme that dynamically links the surface and subsurface parts. Nested time stepping allows smaller time steps for typically faster surface runoff routing in mHM and larger time steps for slower subsurface flow in OGS. mHM#OGS features the coupling interface which can transfer the groundwater recharge and river baseflow rate between mHM and OpenGeoSys. Verification of the coupled model was conducted using the time-series of observed streamflow and groundwater levels. Moreover, we force the transient model using groundwater recharge in two scenarios: (1) spatially variable recharge based on the mHM simulations, and (2) spatially homogeneous groundwater recharge. The modeling result in first scenario has a slightly higher correlation with groundwater head time-series, which further validates the plausibility of spatial groundwater recharge distribution calculated by mHM in the mesocale. The statistical analysis of model predictions shows a promising prediction ability of the model. The offline coupling method implemented here can reproduce reasonable groundwater head time series while keep a desired level of detail in the subsurface model structure with little surplus in computational cost. Our exemplary calculations show that the coupled model mHM#OGS can be a valuable tool to assess the effects of variability in land surface heterogeneity, meteorological, topographical forces and geological zonation on the groundwater flow dynamics.


2018 ◽  
Vol 10 (2) ◽  
pp. 243-248
Author(s):  
Lei Lu ◽  
Chunxue Liu ◽  
Gang Chen ◽  
Liang Guo

Abstract Numerous geological research studies and mining operations have proved that fracture is one of the important factors controlling groundwater flow, mineralization, and ore distribution in metallic deposits. Most current approaches to groundwater flow simulation of naturally fractured media rely on the calculation of equivalent permeability tensors from a discrete fracture network (DFN). This study is aimed at developing a rational two-dimensional DFN by GEOFRAC, a geostatistical method of fracture direction and locations of sample data from a tin mine in the Gaosong area, Gejiu city, southwest China, and utilizing 3,724 outcrop fractures sampled on the ground of mountain Gaosong. Principal inputs of the DFN are density, direction, and continuity of disks that constitute a fracture plane. Fractures simulated by GEOFRAC were validated in that their directions corresponded well with those of the sample fractures. The permeability tensor of each modeling grid was then calculated based on the fracture network constructed. The results showed that GEOFRAC is valuable for two-dimensional DFN modeling in mines and other fracture-controlled geological phenomena, such as groundwater flow and slope failure.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
N. Sundararajan ◽  
S. Sankaran

AbstractIn general, groundwater flow and transport models are being applied to investigate a wide variety of hydrogeological conditions besides to calculate the rate and direction of movement of groundwater through aquifers and confining units in the subsurface. Transport models estimate the concentration of a chemical in groundwater which requires the development of a calibrated groundwater flow model or, at a minimum, an accurate determination of the velocity and direction of groundwater flow that is based on field data. All the available hydrogeological, geophysical and water quality data in Musi basin, Hyderabad, India, were fed as input to the model to obtain the groundwater flow velocities and the interaction of surface water and groundwater and thereby seepage loss was estimated. This in turn paved the way to calculate the capacity of the storage treatment plants (STP) to be established at the inlets of six major lakes of the basin. The total dissolved solid was given as the pollutant load in the mass transport model, and through model simulation, its migration at present and futuristic scenarios was brought out by groundwater flow and mass transport modeling. The average groundwater velocity estimated through the flow model was 0.26 m/day. The capacities of STP of various lakes in the study area were estimated based on the lake seepage and evaporation loss. Based on the groundwater velocity and TDS as pollutant load in the lakes, the likely contamination from lakes at present and for the next 20 years was predicted.


2021 ◽  
Author(s):  
Alberto Previati ◽  
Giuseppe Dattola ◽  
Gabriele Frigerio ◽  
Flavio Capozucca ◽  
Giovanni B. Crosta

<p>A reliable modeling of a landslide activation and reactivation requires a representative geological and engineering geological characterization of the affected materials. Beyond the material strength, landslide reactivation is sensitive to groundwater pressure distributions, that are generated by some external perturbation (recharge) and by the hydraulic properties of the materials. Drainage stabilization works generally involve drilling of a large number of drains and, therefore, minimize the total length is of primary concern to reduce the costs.</p><p>Aim of this work was the calibration of material properties for the optimization of drainage elements to be built for the slope stabilization and the construction of a shallow tunnel crossing a landslide. The case study is represented by the 4.0 · 10<sup>5</sup> m<sup>3</sup> Carozzo landslide (La Spezia, Liguria, Italy) which affects some marly and sandstone formation. During the tunnel excavation a monitoring network consisting of five DMS columns for displacements and piezometric head multilevel measurements was installed. The monitoring provided a series of piezometric head recession curves following some recharge events. The series of data generated in response of a unique perturbation (rainfall recharge event) were chosen to calibrate the material properties through a multi-step approach, starting from a 1D model and progressively approaching a complete 3D model.</p><p>The 1D simplified approach applies the solution by Troch et al. (2003) that considers a homogeneous landslide material, with constant slope and a progressive change in the slope width. In this model a storage function considers the amount of water stored in a slope section. By imposing the continuity equation and the Darcy law a second order of partial differential equation is solved by integration in space and time. By taking the initial conditions from piezometric measurements and assuming a constant rainfall recharge, the piezometric level and the outflow rate were computed and compared with the local piezometric level time history, by changing the hydraulic conductivity and the storage function value.</p><p>Successively, a groundwater flow FEM numerical model (in 2D and 3D) was developed considering the landslide geometry and internal zonation, including the presence of the excavated part of the tunnel. The model domain was divided into sub-zones according to the available geological surveys to account for internal variations of the material properties. The steady-state simulation of the water flow allowed to estimate the equivalent hydrogeological parameters of each subdomain. The hydraulic head distribution obtained under steady-state conditions was used as initial condition for the transient-state simulation. The recharge from precipitation was also included in the water balance by means of daily rainfall time-series. Finally, the model parameters were calibrated in transient state by comparing measured data and simulated results.</p><p>The minimum error between simulated and measured piezometric heads under transient conditions was obtained through the 3D configuration. Calibrated hydraulic conductivities in the 3D solution are up to an order of magnitude lower than the 1D solution because of the homogenous assumption of the model. The internal zonation of the landslide body and the modeling of a low-conductivity shear zone were essential to explain the pressure differences inside the body.</p>


Sign in / Sign up

Export Citation Format

Share Document