Increased Bed Erosion Due to Ice

Author(s):  
Leonard J. Zabilansky ◽  
Decker B. Hains ◽  
John I. Remus
Keyword(s):  
1988 ◽  
Vol 20 (6-7) ◽  
pp. 263-270 ◽  
Author(s):  
K. Otsubo ◽  
K. Muraoka

The dispersion and resuspension of sediments in Takahamairi Bay basin of Lake Kasumigaura were studied by means of field research and numerical simulation. The field data on wind direction and velocity, lake current, water wave, and turbidity were shown. Based on these results, we discuss how precipitated sediments were resuspended in this shallow lake. To predict the turbidity and the depth of bed erosion, a simulation model was established for this lake. The calculated turbidity showed good agreement with the field data. According to the simulated results, the turbidity reaches 200 ppm, and the bed is eroded several millimeters deep when the wind velocity exceeds 12 m/s in the lake.


Author(s):  
Tran A. Tong ◽  
Yaxin Liu ◽  
Evren Ozbayoglu ◽  
Mengjiao Yu ◽  
Reza Ettehadi ◽  
...  

2016 ◽  
pp. 471-477
Author(s):  
H. Watabe ◽  
K. Kaitsuka ◽  
M. Sugiyama ◽  
T. Itoh ◽  
H. Muramatsu ◽  
...  

SPE Journal ◽  
2020 ◽  
Vol 25 (03) ◽  
pp. 1096-1112 ◽  
Author(s):  
Mehmet Meric Hirpa ◽  
Sumanth Kumar Arnipally ◽  
Majid Bizhani ◽  
Ergun Kuru ◽  
Genaro Gelves ◽  
...  

Summary An experimental study was conducted to investigate the transport of sand particles over the sand bed deposited in a horizontal conduit by using turbulent flow of water. The main objectives were to determine the near-wall turbulence characteristics at the onset of bed erosion (i.e., near-wall velocity profile, Reynolds shear stresses, and axial-turbulent intensity); to determine critical velocity required for particle removal from the bed deposits; and more specifically, to determine how the sand-particle size and surface characteristics would influence the critical velocity required for the onset of bed erosion and the near-wall turbulence characteristics. A large-scale horizontal flow loop equipped with a nonintrusive laser-based particle-image velocimetry (PIV) system has been used for the experiments. The effect of sand-particle surface characteristics (i.e., wettability) on the critical velocity and the near-wall turbulence characteristics were investigated by using treated and untreated industrial sands of four different mesh sizes (i.e., 20/40, 30/50, 40/70, 100). The PIV technique was used to determine instantaneous local velocity distribution near the stationary sandbed fluid interface under subcritical and critical flow conditions. The near-wall velocity distribution measured directly at the sand bed/fluid interface together with the measured frictional pressure-loss values were then used for the evaluation of the Reynolds shear stresses and axial turbulent intensities acting at the bed/fluid interface. The results indicated that critical velocity for the onset of particle removal from sand beds increased with the increasing particle size. When sands with special surface treatment were used, it was observed that the critical velocity required for the onset of the bed erosion was significantly lower than that of required for the untreated sands. The degree of reduction in critical velocity varied between 14 and 40% depending on the particle size. In this study, by conducting experiments under controlled conditions, we provided much-needed fundamental data that can be used for the development of improved solid-transport design criteria and suitable mitigation technologies. In particular, we have shown the proof of concept that the surface-treated sand particles might have great potential for improving the transport efficiency of proppants used for hydraulic-fracturing operations.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1523 ◽  
Author(s):  
Juan T. García ◽  
Joseph R. Harrington

The River Bandon located in County Cork (Ireland) has been time-continuously monitored by turbidity probes, as well as automatic and manual suspended sediment sampling. The current work evaluates three different models used to estimate the fine sediment concentration during storm-based events over a period of one year. The modeled suspended sediment concentration is compared with that measured at an event scale. Uncertainty indices are calculated and compared with those presented in the bibliography. An empirically-based model was used as a reference, as this model has been previously applied to evaluate sediment behavior over the same time period in the River Bandon. Three other models have been applied to the gathered data. First is an empirically-based storm events model, based on an exponential function for calculation of the sediment output from the bed. A statistically-based approach first developed for sewers was also evaluated. The third model evaluated was a shear stress erosion-based model based on one parameter. The importance of considering the fine sediment volume stored in the bed and its consolidation to predict the suspended sediment concentration during storm events is clearly evident. Taking into account dry weather periods and the bed erosion in previous events, knowledge on the eroded volume for each storm event is necessary to adjust the parameters for each model.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 118 ◽  
Author(s):  
Hossein Hamidifar ◽  
Alireza Keshavarzi ◽  
Paweł M. Rowiński

Trees have been used extensively by river managers for improving the river environment and ecology. The link between flow hydraulics, bed topography, habitat availability, and organic matters is influenced by vegetation. In this study, the effect of trees on the mean flow, bed topography, and bed shear stress were tested under different flow conditions. It was found that each configuration of trees produced particular flow characteristics and bed topography patterns. The SR (single row of trees) model appeared to deflect the maximum velocity downstream of the bend apex toward the inner bank, while leading the velocity to be more uniformly distributed throughout the bend. The entrainment of sediment particles occurred toward the area with higher values of turbulent kinetic energy (TKE). The results showed that both SR and DR (double rows of trees) models are effective in relieving bed erosion in sharp ingoing bends. The volume of the scoured bed was reduced up to 70.4% for tests with trees. This study shows the effectiveness of the SR model in reducing the maximum erosion depth.


Author(s):  
Evren M. Ozbayoglu ◽  
Flavio Rodrigues ◽  
Reza Ettehadi ◽  
Roland May ◽  
Dennis Clapper

Abstract As explorations advance and drilling techniques become more innovative, complex and challenging trajectories arise. In consequence, cuttings transport has continued to be a subject of interest because, if the drilled cuttings cannot be removed from the wellbore, drilling cannot proceed for long. Therefore, efficient cleaning of highly inclined and horizontal wellbores is still among the most important problems to solve, because these types of wells require specialized fluid formulations and/or specific hole cleaning techniques. There are numerous studies and methods that focus in cuttings transportation in highly inclined and horizontal wells. One of them is the use of viscosity and density sweeps. Sweep pills have been used in the drilling industry as a tool to improve hole cleaning. This report presents the analysis of the performance of different sweeps pills working independently and in tandem in polymeric, oil and synthetic based systems and the comparison between them. The main objective of this project is to provide experimental evidence on which types of fluids perform better under certain conditions by studying the effect of viscosity and density in the bed erosion process in highly inclined and horizontal wells. In order to achieve that, several fluid formulations were tested at different inclination angles (90, 75, 60 degrees) in the Small Indoor Flow Loop property of The University of Tulsa’s Drilling Research Projects. The results of the tests are presented in terms of volume of drilled cuttings removed from the test section and measured differential pressures. All the tests were conducted under atmospheric pressure and ambient temperature. Moreover, a 2-Layer model is used for estimating the erosion performance of sweeps for design purposes, and the model estimations are compared with experimental results. From the experiments, it was identified that polymeric, oil and synthetic based muds with similar density and rheological properties eroded and transported the drilled cuttings similarly under similar test conditions. Furthermore, pumping the sweep pills in tandem demonstrated higher cuttings transport efficiency when compared with the sweep pills applied independently.


Sign in / Sign up

Export Citation Format

Share Document