Building Water Facilities to Sustain Community Viability in Severe Drought Conditions

Author(s):  
Michael Feroz ◽  
Erika Moonin
Mycologist ◽  
1996 ◽  
Vol 10 (2) ◽  
pp. 89-90
Author(s):  
Susan Isaac

2021 ◽  
Author(s):  
Lauro Rossi ◽  
Alessandro Masoero ◽  
Anna Mapelli ◽  
Fabio Castelli

<p>Within the framework of the CIF financed “Pilot Program for Climate Resilience”, the Drought Monitoring and Early Warning System for Bolivia was developed and implemented. The system is operational since July 2020 and aims at detecting emerging severe drought conditions in the country, in order to trigger timely warnings to stakeholders and the general public.</p><p>The Bolivian Drought Monitor has two main components: a technical one (data gathering and analysis, performed through the multi-hazard early warning “myDEWETRA” platform) and an institutional one (creating consensus and disseminating warnings). The system design followed a participatory approach, involving since the early stages the Ministry for Water and Environment (MMAyA), the National Hydrometeorological Service (SENAMHI), the Vice-Ministry for Civil Defence (VIDECI). These institutions actively contribute to the monthly edition of the drought bulletin, each one for its own sector of competence, through a dedicated IT tool for synchronous compilation. Ongoing drought conditions are reported in a national bulletin, issued monthly and published on a dedicated public website: http://monitorsequias.senamhi.gob.bo/</p><p>Given the Bolivian data-poor context, analysis strongly relies on a large variety of multi-source satellite products, spanning from well consolidated ones in the operational practice to more experimental ones such as from the SMAP mission. This information is used to monthly refresh the spatial maps of 17 indexes covering meteorological, hydrological and agricultural droughts for different aggregation periods (from 1 to 12 months). Simulation of the system performance over a long period (2002-2019) and comparison with recorded socio-economic drought impacts  from the National Disaster Observatory (Observatorio Nacional de Desastres- OND) of the Vice-Ministry of Civil Defence (VIDECI) was used to define a most representative compound index, based on a weighted combination of a selection of 4 indexes with their related thresholds. The combination of 3-month SPEI, 2-month SWDI, 1-month VHI and 1-month FAPAR indexes performed the best in the comparison with impact records. This combination encompasses both the medium-term effects of meteorological and hydrological deficits (3-month SPEI and SWDI), both the short-term effects on vegetation (1-month VHI and FAPAR). This set of indexes proved to be a solid proxy in estimating possible impacts on population of ongoing or incoming drought spells, as happened for most significant recent drought events occurred in Bolivia, such as the 2010 event in the Chaco region and the 2016 drought event in the Altiplano and Valles regions, that heavily affected the water supply in several major cities (La Paz, Sucre, Cochabamba, Oruro and Potosí).</p><p>The design of the monitoring and bulletin management platform, together with its strong remote-sensing base, give to the system a high potential for easy export to other regional and national contexts. Also, the variety of the different computed drought indexes and the replicability of the procedure for the best compound index identification will allow for efficient evolutionary maintenance as new remote-sensing products will be available in the future.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elsayed Mansour ◽  
Hany A. M. Mahgoub ◽  
Samir A. Mahgoub ◽  
El-Sayed E. A. El-Sobky ◽  
Mohamed I. Abdul-Hamid ◽  
...  

AbstractWater deficit has devastating impacts on legume production, particularly with the current abrupt climate changes in arid environments. The application of plant growth-promoting rhizobacteria (PGPR) is an effective approach for producing natural nitrogen and attenuating the detrimental effects of drought stress. This study investigated the influence of inoculation with the PGPR Rhizobium leguminosarum biovar viciae (USDA 2435) and Pseudomonas putida (RA MTCC5279) solely or in combination on the physio-biochemical and agronomic traits of five diverse Vicia faba cultivars under well-watered (100% crop evapotranspiration [ETc]), moderate drought (75% ETc), and severe drought (50% ETc) conditions in newly reclaimed poor-fertility sandy soil. Drought stress substantially reduced the expression of photosynthetic pigments and water relation parameters. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased in plants under drought stress compared with those in well-watered plants. These adverse effects of drought stress reduced crop water productivity (CWP) and seed yield‐related traits. However, the application of PGPR, particularly a consortium of both strains, improved these parameters and increased seed yield and CWP. The evaluated cultivars displayed varied tolerance to drought stress: Giza-843 and Giza-716 had the highest tolerance under well-watered and moderate drought conditions, whereas Giza-843 and Sakha-4 were more tolerant under severe drought conditions. Thus, co-inoculation of drought-tolerant cultivars with R. leguminosarum and P. putida enhanced their tolerance and increased their yield and CWP under water-deficit stress conditions. This study showed for the first time that the combined use of R. leguminosarum and P. putida is a promising and ecofriendly strategy for increasing drought tolerance in legume crops.


2021 ◽  
Author(s):  
Giovanni Pugliese ◽  
Johannes Ingrisch ◽  
Thomas Klüpfel ◽  
Kathiravan Meeran ◽  
Gemma Purser ◽  
...  

<p>Volatile organic compounds (VOC) play an important role in determining atmospheric processes that control air quality and climate. Although atmospheric VOC concentrations are mostly affected by plants, soils are significant contributors as they are simultaneously a source, a sink and a storage of atmospheric VOCs. The aim of the present study was to assess the effects of a prolonged drought condition on VOC soil fluxes in the tropical rainforest mesocosm of Biosphere 2 (B2; Tucson, Arizona, USA). The absence of atmospheric chemistry due to UV light filtering by the glass and the possibility to control and manipulate the conditions of the ecosystem make the B2 an ideal set-up to study the rainforest VOC dynamics.</p><p>The experiments were conducted over the 4 months B2WALD campaign during which the rainforest was subjected to a controlled drought period of about 10 weeks followed by a rewetting period. Soil VOCs fluxes were measured continuously by means of a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) that was connected to 12 automated soil chambers (LI 8100-104 Long-Term Chambers, Licor Inc.) placed in 4 different locations within the B2 rainforest.</p><p>The B2 rainforest soil acted as a strong sink for all isoprenoid species. The isoprene sink steadily weakened during drought period, but increased sharply back to the pre-drought levels after the rain rewet. In contrast, the monoterpene soil sink became slightly stronger during the mild drought period (up to 5 weeks after the last rainfall) but weakened during the severe drought period (up to 10 weeks after rainfall). A huge increase in monoterpene uptake was observed after the rain rewet. The oxidation products of isoprene (methacrolein, methyl vinyl ketone and isoprene peroxides) showed a similar trend to the monoterpenes, even in absence of atmospheric chemistry. The species with molecular formula C5H8O was taken up by the soil during predrought, which was reduced during mild drought period but increased again during the severe drought period.Sulfur-containing compounds including DMS and methanethiol all showed a significant emission peak immediately after the rain rewet.Oxygenated VOCs such as methanol and acetone were taken up by the soil in wet conditions. The uptake of both compounds strongly decreased with the drought and in severe drought conditions they were even emitted by the soil.</p><p>In summary, soil VOC fluxes changed markedly with the onset and development drought stages (pre, mild and severe drought) of the B2 rainforest, mirroring atmospheric VOC concentrations and soil microbial activity changes related to overall ecosystem response to drought and recovery.</p>


2004 ◽  
Vol 26 (2) ◽  
pp. 185
Author(s):  
PE Hornsby ◽  
EY Corlett

Responses to severe drought by two sympatric macropodids, the yellow-footed rock-wallaby (Petrogale xanthopus) and the euro (Macropus robustus erubescens) were examined at a site in the North Flinders Ranges of South Australia. The results indicate that the two species respond differentially to drought conditions. It was observed that small fluctuations occurred in the P. xanthopus population. In contrast, M. r. erubescens evidenced significant mortality, especially among larger animals.


2009 ◽  
Vol 24 (3) ◽  
pp. 165-173 ◽  
Author(s):  
T.S. Kornecki ◽  
A.J. Price ◽  
R.L. Raper ◽  
F.J. Arriaga

AbstractRollers crimpers have been used in conservation agriculture to terminate cover crops; however, excessive vibration generated by the original straight-bar roller design has delayed adoption of this technology in the United States. To avoid excessive vibration, producers generally reduce operating speeds that increase the time needed to perform the field operation. The objectives of this research were to identify roller crimper designs that terminated rye cover crops consistently, resulted in soil moisture conservation after use, and minimized vibrations when operated in the field. Six different roller types were developed and tested at 3.2 and 6.4 km h−1 in Alabama field experiments during the 2006, 2007 and 2008 growing seasons. All roller types were used alone and one also in combination with glyphosate. Rye mortalities were evaluated 1, 2 and 3 weeks after rolling and compared with the check (non-rolled standing rye). Soil volumetric moisture content (VMC) was measured at the day of rolling, and then at 1, 2 and 3 weeks after rolling. Vibration was measured on the rollers' and tractor's frames during operation. Mortality for rolled rye 2 weeks after rolling was at least 98% compared with 96% for the check in 2006, 93% for rolling compared with 75% for the check in 2007, and 94% for rolling compared with 60% for the check in 2008 (P<0.10). There were no consistent differences in rye mortality across roller types (without glyphosate) and speeds. VMC for soil in non-rolled rye plots was consistently lower than in rolled rye plots, averaging 3% compared with 7% 2 weeks after rolling in 2006, and 4% compared with 8% in 2008. During 2007, VMC was affected by severe drought conditions, and differences between roller treatments were detected but minor. The straight-bar roller generated the highest vibration on the tractor's frame at 6.4 km h−1 (0.71 m s−2, RMS), which exceeded International Standards (International Standard Office (ISO)). At 6.4 km h−1, new roller designs generated significantly lower acceleration levels from 0.12 to 0.32 m s−2 on the tractor's frame and were below detrimental effects on health ‘health limits’ classified by ISO. Overall, 2 weeks after rolling, all roller designs effectively terminated rye above 90%, which is the recommended termination level of rye to plant a cash crop into residue mat, while protecting soil surface from water loss. New roller designs generate less vibration than the original design and can be used safely at higher operating speeds.


Weed Science ◽  
1970 ◽  
Vol 18 (6) ◽  
pp. 707-711 ◽  
Author(s):  
L. L. Danielson

Three tractor cultivations that severely pruned the root systems of hand-weeded plots of sweet corn [Zea mays L. var. rugosa Bonaf., Iochief] grown on a Codorus-Elkton silt loam under extreme drought conditions did not reduce the yield of marketable ears when irrigation totalling 2 acre-inches was applied during pollination and ear-filling. Pre-emergence application of 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine [atrazine] to the soil surface without cultivation reduced brace root growth and yields significantly in the year of most severe drought. These effects of atrazine were avoided when the herbicide treatments were supplemented with tractor cultivations that covered the brace root zone of the corn plants with soil.


2016 ◽  
Vol 8 (4) ◽  
pp. 498-510 ◽  
Author(s):  
Fawzy Mahmoud SALAMA ◽  
Mohamed Abu El-Ela GADALLAH ◽  
Suzan Abd El-Monem SAYED ◽  
Ayat Abd El Monem ABD EL-GALIL

In the present study two species were selected based on their highest presence values to study the response to the severe drought conditions in desert: these were Zilla spinosa and Leptadenia pyrotechnica. The results showed that soil water content and organic matter of Wadi El-Assiuty were very low over the study period. The estimated pH values in the soil solution at the different studied stands tended to be slight alkaline. Total soluble salts were generally higher during summer versus winter. The water content in the studied plants increased significantly during summer. The selected species increased their content of chlorophyll a and b in summer. The stability index of chlorophyll a and b was significantly higher in summer than that estimated in winter. Calcium and magnesium were accumulated in considerable amounts. Ca+2 was the main accumulated cation whereas its concentration were higher than magnesium. Z. spinosa accumulated more sulphates in summer than in winter. Phosphates appeared in low amounts in all the investigated plants. In L. pyrotechnica tissue, Na+ concentration correlated negatively with those found in soil during summer. In winter Na+ and SO4 correlated positively and K+ correlated negatively in Z. spinosa. The studied species showed slightly increase in soluble sugars accumulation. Soluble protein content in Z. spinosa and L. pyrotechnica decreased significantly during winter season. Amino acids content was low and varied between the two investigated species. It seemed that the Z. spinosa is better adapted than L. pyrotechnica to drought conditions, prevailing in the area under study. This judgement can be concluded by the average metabolic potentiality in the species, whereas soluble metabolites (soluble sugars and soluble proteins) were relatively much higher than in the case of L. pyrotechnica.


Sign in / Sign up

Export Citation Format

Share Document