Seismic Design Procedure for Total Accelerations and Inter-Story Drifts Reduction of Existing and New Buildings with Protective Systems

Author(s):  
O. Lavan
Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 62-74
Author(s):  
Seyed Amin Mousavi ◽  
Seyed Mehdi Zahrai ◽  
Ali Akhlagh Pasand

2021 ◽  
pp. 875529302098196
Author(s):  
Siamak Sattar ◽  
Anne Hulsey ◽  
Garrett Hagen ◽  
Farzad Naeim ◽  
Steven McCabe

Performance-based seismic design (PBSD) has been recognized as a framework for designing new buildings in the United States in recent years. Various guidelines and standards have been developed to codify and document the implementation of PBSD, including “ Seismic Evaluation and Retrofit of Existing Buildings” (ASCE 41-17), the Tall Buildings Initiative’s Guidelines for Performance-Based Seismic Design of Tall Buildings (TBI Guidelines), and the Los Angeles Tall Buildings Structural Design Council’s An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region (LATBSDC Procedure). The main goal of these documents is to regularize the implementation of PBSD for practicing engineers. These documents were developed independently with experts from varying backgrounds and organizations and consequently have differences in several degrees from basic intent to the details of the implementation. As the main objective of PBSD is to ensure a specified building performance, these documents would be expected to provide similar recommendations for achieving a given performance objective for new buildings. This article provides a detailed comparison among each document’s implementation of PBSD for reinforced concrete buildings, with the goal of highlighting the differences among these documents and identifying provisions in which the designed building may achieve varied performance depending on the chosen standard/guideline. This comparison can help committees developing these documents to be aware of their differences, investigate the sources of their divergence, and bring these documents closer to common ground in future cycles.


2019 ◽  
Vol 121 ◽  
pp. 87-101
Author(s):  
Shahrokh Shoeibi ◽  
Majid Gholhaki ◽  
Mohammad Ali Kafi

2009 ◽  
Vol 25 (3) ◽  
pp. 583-605 ◽  
Author(s):  
Wei Chiang Pang ◽  
David V. Rosowsky

This paper presents a direct displacement design (DDD) procedure that can be used for seismic design of multistory wood-framed structures. The proposed procedure is applicable to any pure shear deforming system. The design procedure is a promising design tool for performance-based seismic design since it allows consideration of multiple performance objectives (e.g., damage limitation, safety requirements) without requiring the engineer to perform a complex finite element or nonlinear time-history analysis of the complete structure. A simple procedure based on normalized modal analysis is used to convert the code-specified acceleration response spectrum into a set of interstory drift spectra. These spectra can be used to determine the minimum stiffness required for each floor based on the drift limit requirements. Specific shear walls can then be directly selected from a database of backbone curves. The procedure is illustrated on the design of two three-story ATC-63 archetype buildings, and the results are validated using nonlinear time-history analysis.


Author(s):  
Michele Palermo ◽  
Vittoria Laghi ◽  
Stefano Silvestri ◽  
Giada Gasparini ◽  
Tomaso Trombetti

In the present work, a Performance-Based Seismic Design procedure applied to multi-storey frame structures with innovative hysteretic diagonal steel devices (called Crescent Shaped Braces or CSB) is introduced. CSBs are steel elements of peculiar geometrical shapes that can be adopted in frame buildings as enhanced hysteretic diagonal braces. Based on their "boomerang" configuration and placement inside the frame structure, they are characterized by a lateral stiffness uncoupled from the yield strength and, if properly inserted, by an overall symmetric hysteretic behavior with hardening response at large drifts, thus preventing from global structural instability due to second-order effects. The procedure here presented is intended to guide the structural engineer through all the steps of the design process, from the selection of the performance objectives to the preliminary sizing of the CSB devices, up to the final design configuration. The steps are described in detail through the development of an applicative example.


2005 ◽  
Vol 9 (sup2) ◽  
pp. 279-307 ◽  
Author(s):  
T. J. Sullivan ◽  
M. J. N. Priestley ◽  
G. M. Calvi

Sign in / Sign up

Export Citation Format

Share Document