Energy Consumption Evaluation Method of Regional Logistics System Based on Information Entropy Theory

ICLEM 2010 ◽  
2010 ◽  
Author(s):  
Xiaozhou He ◽  
Xiucheng Guo ◽  
Yongping Wei
2012 ◽  
Vol 468-471 ◽  
pp. 2647-2652
Author(s):  
Jian Xu ◽  
Dan Liu ◽  
Xin Wen

For the present situation of decision-making errors and poor regulation caused by lack of operational monitoring in current development of China’s regional logistics system, the operation monitoring system of regional logistics system was designed in the paper. It consisted of index system, evaluation method, diagnosis and early-warning. By analyzing the content of operation for regional logistics system, the boundary of monitoring was defined and an index system was constructed; the grey relational grading evaluation model was introduced in monitoring and evaluation; diagnosis and early-warning could be realized by means of improved radar chart. It is expected to provide theory and methodological tool for operation monitoring of regional logistics.


2013 ◽  
Vol 33 (9) ◽  
pp. 2490-2492
Author(s):  
Yuanxiang QIN ◽  
Liang DUAN ◽  
Kun YUE

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Jingzong Yang ◽  
Xiaodong Wang ◽  
Zao Feng ◽  
Guoyong Huang

Aiming at the nonstationary and nonlinear characteristics of acoustic impulse response signal in pipeline blockage and the difficulty in identifying the different degrees of blockage, this paper proposed a pattern recognition method based on local mean decomposition (LMD), information entropy theory, and extreme learning machine (ELM). Firstly, the impulse response signals of pipeline extracted in different operating conditions were decomposed with LMD method into a series of product functions (PFs). Secondly, based on the information entropy theory, the appropriate energy entropy, singular spectrum entropy, power spectrum entropy, and Hilbert spectrum entropy were extracted as the input feature vectors. Finally, ELM was introduced for classification of pipeline blockage. Through the analysis of acoustic impulse response signal collected under the condition of health and different degrees of blockages in pipeline, the results show that the proposed method can well characterize the state information. Also, it has a great advantage in terms of accuracy and it is time consuming when compared with the support vector machine (SVM) and BP (backpropagation) model.


2010 ◽  
Vol 29-32 ◽  
pp. 2698-2702
Author(s):  
Xian Qi Zhang ◽  
Wen Hong Feng ◽  
Nan Nan Li

It is necessary to take into account synthetically attribute of every index because of independence and incompatibility resulted from single index evaluating outcomes. Through the information entropy theory and attribute recognition model being combined together, attribute recognition model based on entropy weight is constructed and applied to evaluating groundwater quality by a new method, weight coefficient by the law of entropy value is exercised so that it is more objective. The outcome from concrete application indicates that it is suitable to evaluate water quality with reasonable conclusion and simple calculation.


2012 ◽  
Vol 446-449 ◽  
pp. 3058-3061 ◽  
Author(s):  
Chun Tan ◽  
Jian Ping Chen ◽  
Yu Zhen Pan ◽  
Cen Cen Niu ◽  
Li Ming Xu

Based on the principle of fuzzy matter-element analysis, the concept of information entropy is introduced to establish a fuzzy matter-element evaluation method. This method is utilized to comprehensively evaluate the degree of debris flow. The classifications of debris flow are regarded as the objects of matter-element and their indexes for evaluation as well as the corresponding fuzzy values are used to construct the composite fuzzy matter-elements. By calculating the relevancy the comprehensive evaluation of debris flow can be carried out. This model is applied to analyze the degree of debris flow in the practical application. The application shows that the model is effective and practical.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2286
Author(s):  
Xiaoman Cao ◽  
Hansheng Yan ◽  
Zhengyan Huang ◽  
Si Ai ◽  
Yongjun Xu ◽  
...  

Stable, efficient and lossless fruit picking has always been a difficult problem, perplexing the development of fruit automatic picking technology. In order to effectively solve this technical problem, this paper establishes a multi-objective trajectory model of the manipulator and proposes an improved multi-objective particle swarm optimization algorithm (represented as GMOPSO). The algorithm combines the methods of mutation operator, annealing factor and feedback mechanism to improve the diversity of the population on the basis of meeting the stable motion, avoiding the local optimal solution and accelerating the convergence speed. By adopting the average optimal evaluation method, the robot arm motion trajectory has been testified to constructively fulfill the picking standards of stability, efficiency and lossless. The performance of the algorithm is verified by ZDT1~ZDT3 benchmark functions, and its competitive advantages and disadvantages with other multi-objective evolutionary algorithms are further elaborated. In this paper, the algorithm is simulated and verified by practical experiments with the optimization objectives of time, energy consumption and pulsation. The simulation results show that the solution set of the algorithm is close to the real Pareto frontier. The optimal solution obtained by the average optimal evaluation method is as follows: the time is 34.20 s, the energy consumption is 61.89 °/S2 and the pulsation is 72.18 °/S3. The actual test results show that the trajectory can effectively complete fruit picking, the average picking time is 25.5 s, and the success rate is 96.67%. The experimental results show that the trajectory of the manipulator obtained by GMOPSO algorithm can make the manipulator run smoothly and facilitates efficient, stable and nondestructive picking.


Sign in / Sign up

Export Citation Format

Share Document