Wave Effects on Bathymetric Depressions

Author(s):  
Luce Bassetti ◽  
Sean O'Neil
Keyword(s):  
Author(s):  
Kenneth S. Vecchio

Shock-induced reactions (or shock synthesis) have been studied since the 1960’s but are still poorly understood, partly due to the fact that the reaction kinetics are very fast making experimental analysis of the reaction difficult. Shock synthesis is closely related to combustion synthesis, and occurs in the same systems that undergo exothermic gasless combustion reactions. The thermite reaction (Fe2O3 + 2Al -> 2Fe + Al2O3) is prototypical of this class of reactions. The effects of shock-wave passage through porous (powder) materials are complex, because intense and non-uniform plastic deformation is coupled with the shock-wave effects. Thus, the particle interiors experience primarily the effects of shock waves, while the surfaces undergo intense plastic deformation which can often result in interfacial melting. Shock synthesis of compounds from powders is triggered by the extraordinarily high energy deposition rate at the surfaces of the powders, forcing them in close contact, activating them by introducing defects, and heating them close to or even above their melting temperatures.


2006 ◽  
Vol 134 ◽  
pp. 1065-1070
Author(s):  
E. Lach ◽  
M. Scharf
Keyword(s):  

2015 ◽  
Vol 66 (3) ◽  
pp. 265-274 ◽  
Author(s):  
Y Cao ◽  
ÉM Neif ◽  
W Li ◽  
J Coppens ◽  
N Filiz ◽  
...  

1986 ◽  
Vol 34 (6) ◽  
pp. 1708-1718 ◽  
Author(s):  
Shuji Deguchi ◽  
William D. Watson

2021 ◽  
Vol 13 (14) ◽  
pp. 2732
Author(s):  
Jonathan Peereman ◽  
J. Aaron Hogan ◽  
Teng-Chiu Lin

Mangrove forests growing at the poleward edges of their geographic distribution are occasionally subject to freezing (<0 °C) and cold wave (>0 °C) events. Cold wave effects on mangrove trees are well documented and adaptation to cold stress has been reported for local mangrove populations in the North Atlantic. However, there is less understanding of effects of cold waves on mangroves in the northern Pacific, especially at the regional scale. Moreover, it is unclear if cold tolerant mangrove species of North Asia display variation in resistance to cold temperatures across their geographic distribution. Using a cold wave event that occurred in January 2021, we evaluated the effects of low temperatures on vegetation index (VI) change (relative to a recent five-year baseline) for mangrove forests dominated by Kandelia obovata (Rhizophoraceae) and Avicennia marina (Acanthaceaee) at the northern edge of their geographical range. We used two VIs derived from Sentinel-2 imagery as indicators for canopy health: the normalized difference infrared index (NDII) and the chlorophyll red-edge index (ChlRE), which reflect forest canopy water content and chlorophyll concentration, respectively. We isolated the cold wave effects on the forest canopy from phenology (i.e., cold wave induced deviation from a five-year baseline) and used multiple linear regression to identify significant climatic predictors for the response of mangrove forest canopy VI change to low temperatures. For areas where the cold wave resulted in temperatures <10 °C, immediate decreases in both VIs were observed, and the VI difference relative to the baseline was generally greater at 30-days after the cold wave than when temperatures initially recovered to baseline values, showing a slight delay in VI response to cold wave-induced canopy damage. Furthermore, the two VIs did not respond consistently suggesting that cold-temperature induced changes in mangrove canopy chlorophyll and water content are affected independently or subject to differing physiological controls. Our results confirm that local baseline (i.e., recent past) climate predicts canopy resistance to cold wave damage across K. obovata stands in the northern Pacific, and in congruence with findings from New World mangroves, they imply geographic variation in mangrove leaf physiological resistance to cold for Northern Pacific mangroves.


Sign in / Sign up

Export Citation Format

Share Document