Research on Flow Number of Asphalt Mixture under High Temperature and Heavy Load

Author(s):  
Jiupeng Zhang ◽  
Jianzhong Pei
2011 ◽  
Vol 287-290 ◽  
pp. 858-861
Author(s):  
Hui Wang ◽  
Zhou Qing Zhao ◽  
Jian Zeng

Aiming at the characteristics of pavement rutting damage of test road under the condition of heavy load and abrupt slope, an overlay design scheme and a new overlay material with high performance was proposed. The new material is PG82 modified asphalt SMA-13 added polyester fibre which can significantly improve the high temperature performance of asphalt mixture under severe environment, and its strength and crack resistance are superior to normal SMA-13. Tracking survey of test road shows that the pavement performances keeps good and rutting is under good control. Therefore those measurements are successful and can be a reference to similar projects.


2021 ◽  
Vol 293 ◽  
pp. 02029
Author(s):  
Tang-Baoli ◽  
Ren-yongqiang ◽  
Chen-Xiangmei ◽  
Hou-Huifang ◽  
Liang-Jianping

In order to study the high temperature performance of LM-S modified asphalt mixture and SBS modified asphalt mixture, repeated loading creep test was used to study the influence of temperature and deviatoric stress on the axial permanent deformation of the two kinds of asphalt mixture. At the same time, Permanent deformation, ε@5000, flow number FN and creep rate were select to evaluation of high temperature performance from different directions. The results show that the ε@5000 and creep rate are failed in the condition of high temperature and large deviatoric stress, so it hast widely practicable. The flow number FN is also limited by the conditions, which leads to the distortion of the flow number at lower temperature and smaller deviatoric stress so it is not easy to direct used as the evaluation index. Axial permanent deformation can reflect the permanent deformation in different cycles which is an excellent index to evaluate the high temperature performance of the two kinds of asphalt mixture, it is recommended to use axial permanent deformation to compare the LM-S modified asphalt mixture and SBS modified asphalt mixture The experimental results show that the axial permanent deformation of the LM-S modified asphalt mixture is always less than that of SBS modified asphalt mixture,it indicating that the high temperature rutting resistance of the LM-S modified asphalt mixture is better than that of SBS modified asphalt mixture.


2013 ◽  
Vol 470 ◽  
pp. 823-826
Author(s):  
Chen Chen Zhang ◽  
Guang Yang ◽  
Li Jia Zhou ◽  
Jing Hang Wu

Fine aggregates are sensitive parts to skeleton structure of mixture and decrease rutting resistance of asphalt mixtures. In order to evaluate the high temperature performance of mixtures with different fine aggregate (2.36mm and 1.18mm) content, 16 gradations were investigated. Flow number test and rutting test was conducted to evaluate anti-rutting performance of mixtures. Then, interference coefficient was put forward to analyze interference rule of high temperature performance. The results show that high temperature performance was improved with the increasing size of nominal maximum aggregate size; the interference effects of fine aggregate ( 2.36mm and 1.18 mm ) is inversely proportional to nominal maximum aggregate size.


2021 ◽  
Vol 298 ◽  
pp. 123831
Author(s):  
Shifa Xu ◽  
Ping Ruan ◽  
Zhaoyang Lu ◽  
Lingzi Liang ◽  
Bingye Han ◽  
...  

2016 ◽  
Vol 858 ◽  
pp. 300-304
Author(s):  
Zhen Fu Chen ◽  
Dan Wu ◽  
Qiu Wang Tao ◽  
Yuan Chu Gan

The high temperature stability of AC-16, AC-13, AC-20 under specimen thickness of 5cm and 6cm is studied through indoor asphalt mixture high rutting test, Through comparison and analysis about experimental data, it is found that the stability of AC-16, AC-13, AC-20 asphalt mixture at high- temperature decreases in turn. It is shown that thickness changes did not affect the change trend of the high temperature stability under gradation change, and the stability of AC-16 at high-temperature is the best, the AC-13 is second and the AC-20 is less.


2012 ◽  
Vol 174-177 ◽  
pp. 127-130 ◽  
Author(s):  
Hong Wei Feng ◽  
Chun Han

The negative factors of the colored asphalt mixture extremely correlate to its high-temperature behavior. With the Grey Relation Analysis, this paper makes a thorough analysis of the affective factors on the high-temperature behavior of the colored asphalt mixture, the result of which shows that the affective factors can be classified as the softening point of colored asphalt and the aggregate ratio of mixture. The research findings will provide a beneficial reference for the design of colored asphalt mixture.


2014 ◽  
Vol 941-944 ◽  
pp. 324-328 ◽  
Author(s):  
Zhong Ping Yao ◽  
Meng Li ◽  
Wei Liu ◽  
Zhen Bei Chen ◽  
Rong Hui Zhang

Use polyurethane rubber composite modified asphalt.Through the Marshall test and rutting test, test of polyurethane rubber asphalt mixture high temperature stability, low temperature crack resistance and water damage resistance, verify the composite modification advantages.


2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


Sign in / Sign up

Export Citation Format

Share Document