Fatigue Reliability Updating Using Nondestructive Inspections

Author(s):  
Zhengwei Zhao ◽  
Achintya Haldar
Keyword(s):  
Author(s):  
Naser Shabakhty ◽  
Pieter van Gelder ◽  
Hotze Boonstra

Generally, jack-up structures are used for production drilling and exploration of hydrocarbons. The combination of mobility and the behavior as a fixed structure in operational conditions has made it an important structure in the offshore industry over the last 40 years. When a jack-up structure has been in operation for a great part of its original design-life and intention is there to extend the usage of this structure at a specific location, an investigation on fatigue degradation of the structure is an essential factor that has to be carried out before taking any decision. Fatigue is the process of damage accumulation in material due to stress fluctuation caused by variation of loads in service time. The fatigue failure occurs when accumulated damage has exceeded a critical level. In this paper, the remaining fatigue capacity of the jack-up structure is considered as an indicator for adequate use of the structure. It can be specified based on the difference between design-fatigue and fatigue experienced by the structure. The design-fatigue can be determined based on fluctuation of loads during the lifetime of the structure and experienced fatigue is specified by the load conditions, which the structure has experienced during its service time. When the information on the load conditions which the structure has experienced in its service time is available or known precisely, determination of the remaining fatigue capacity could be carried out by using the Palmgren–Miner’s rule. In practice, uncertainties are present in loads and characteristics of material. Hence it will be reasonable to determine the remaining fatigue reliability of the structure by the reliability methods. In this paper, based on a crack propagation approach and achieved information from inspection, it is shown that the remaining fatigue reliability of jack-up structures could be determined and updated by using a Bayesian procedure in the duration of the service time.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983684 ◽  
Author(s):  
Leilei Cao ◽  
Lulu Cao ◽  
Lei Guo ◽  
Kui Liu ◽  
Xin Ding

It is difficult to have enough samples to implement the full-scale life test on the loader drive axle due to high cost. But the extreme small sample size can hardly meet the statistical requirements of the traditional reliability analysis methods. In this work, the method of combining virtual sample expanding with Bootstrap is proposed to evaluate the fatigue reliability of the loader drive axle with extreme small sample. First, the sample size is expanded by virtual augmentation method to meet the requirement of Bootstrap method. Then, a modified Bootstrap method is used to evaluate the fatigue reliability of the expanded sample. Finally, the feasibility and reliability of the method are verified by comparing the results with the semi-empirical estimation method. Moreover, from the practical perspective, the promising result from this study indicates that the proposed method is more efficient than the semi-empirical method. The proposed method provides a new way for the reliability evaluation of costly and complex structures.


2012 ◽  
Vol 204-208 ◽  
pp. 3128-3131
Author(s):  
Li Rong Sha ◽  
Yue Yang

The ANN-based optimization for considering fatigue reliability requirements in structural optimization was proposed. The ANN-based response surface method was employed for performing fatigue reliability analysis. The fatigue reliability requirements were considered as constraints while the weight as the objective function, the ANN model was adopted to establish the relationship between the fatigue reliability and geometry dimension of the structure, the optimal results of the structure with a minimum weight was reached.


Sign in / Sign up

Export Citation Format

Share Document