Field Experimental Study of Lateral Load Capacity of Bored Pile in Soft Soil

Author(s):  
Chao Yang ◽  
Guoliang Dai ◽  
Weiming Gong
2017 ◽  
Vol 97 ◽  
pp. 01032
Author(s):  
B. Sri Umniati ◽  
Sri Murni Dewi ◽  
Nindyawati ◽  
Gatot Adi Susilo

2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


2012 ◽  
Vol 594-597 ◽  
pp. 527-531
Author(s):  
Wan Qing Zhou ◽  
Shun Pei Ouyang

Based on the experimental study of rotary filling piles with large diameter subjected to axial load in deep soft soil, the bearing capacity behavior and load transfer mechanism were discussed. Results show that in deep soft soil foundation, the super–long piles behave as end-bearing frictional piles. The exertion of the shaft resistance is not synchronized. The upper layer of soil is exerted prior to the lower part of soil. Meanwhile, the exertion of shaft resistance is prior to the tip resistance. For the different soil and the different depth of the same layer of soil, shaft resistance is different.


2020 ◽  
Vol 61 (HTCS6) ◽  
pp. 1-9
Author(s):  
Thinh Duc Ta ◽  
Phuc Dinh Hoang ◽  
Thang Anh Bui ◽  
Trang Huong Thi Ngo ◽  
Diu Thi Nguyen ◽  
...  

Sea sand-cement-fly ash column technology for soft soil treatment is a new technology in the process of completing the theoretical basis, the experimental basis, and the construction of the ground treatment technological procedure. The paper presents the results of scientific research on design, calculation, construction, and acceptance of sea sand-cement-fly ash column. The scientific basis for the design of column is to consider the role of the column in composite ground, that is to use the column as soft ground improvement or soft soil reinforcement. The important parameters for the column design are: cement and fly ash content; column length; column diameter; number of columns; distance among columns; load capacity and settlement of composite ground. The sequence of steps of construction and acceptance of column includes: selection of construction equipment, preparation of construction sites, trial construction, official construction, evaluation of ground quality after treatment and preparation of document for acceptance.


2016 ◽  
Author(s):  
Britta Schoesser ◽  
Atefeh Ghorbanpour ◽  
Matthias Halisch ◽  
Markus Thewes

Abstract. Bentonite suspensions are an essential tool for different construction techniques in horizontal and vertical drilling, in diaphragm and bored pile walls as well as in pipe jacking and tunneling. One of the main tasks of the suspension is to prevent the surrounding ground from collapsing during the excavation process of trenches, drill holes or tunnels. In order to maintain the soil stability close to the excavation, the bentonite suspension has to counteract against the earth and water pressure. Therefore, the pressure acting in the suspension has to counter the groundwater pressure and to be transferred into an effective stress to support the soil skeleton. The creation of a pressure transfer mechanism can be achieved in two ways. A direct relation exists between the mechanism of the pressure transfer and the penetration behavior of the bentonite suspension in the subsoil. The relation of the size of the bentonite particles in the suspension and the size of the pores in soft soil is decisive. In addition, the yield strength of the bentonite suspension is a determining factor. Concerning the penetration behavior two theoretical models exist actually: formation of a filter cake and entire penetration into the pore space. If the pore space is smaller than the size of the bentonite particles, a filtration process takes place. Here, the bentonite particles agglomerate gradually at the entrance of the pore space and create a thin nearly impermeable layer. This membrane is named filter cake. If the pore space is larger than the size of the bentonite particles, the suspension penetrates into the subsoil up to a certain depth. These models have a more theoretical character due to missing visual evidence concerning the interaction of the bentonite suspension in the pore space. Here, the micro CT technique delivers a valuable contribution to this research.


Author(s):  
K.V. Reshma ◽  
K. Amudha ◽  
C. Janarthanan ◽  
N.R. Ramesh ◽  
K. Gopakumar ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document