Research to build technological procedure for soft ground improvement using sea sand-cement-fly ash column

2020 ◽  
Vol 61 (HTCS6) ◽  
pp. 1-9
Author(s):  
Thinh Duc Ta ◽  
Phuc Dinh Hoang ◽  
Thang Anh Bui ◽  
Trang Huong Thi Ngo ◽  
Diu Thi Nguyen ◽  
...  

Sea sand-cement-fly ash column technology for soft soil treatment is a new technology in the process of completing the theoretical basis, the experimental basis, and the construction of the ground treatment technological procedure. The paper presents the results of scientific research on design, calculation, construction, and acceptance of sea sand-cement-fly ash column. The scientific basis for the design of column is to consider the role of the column in composite ground, that is to use the column as soft ground improvement or soft soil reinforcement. The important parameters for the column design are: cement and fly ash content; column length; column diameter; number of columns; distance among columns; load capacity and settlement of composite ground. The sequence of steps of construction and acceptance of column includes: selection of construction equipment, preparation of construction sites, trial construction, official construction, evaluation of ground quality after treatment and preparation of document for acceptance.

2016 ◽  
Vol 19 (1) ◽  
pp. 116-121
Author(s):  
Nhat Dai Vo ◽  
Viet Hoang Quoc Lam ◽  
Tuan Minh Pham

Viet Nam is one of the country that has a very soft and complicated geological feature. Therefore, how to economize cost but satisfy the standard and technical requirements in designing by selecting an appropriate method in building especially projects constructed on soft ground is always needed to consider and research continuouslly. In this paper, a method how to determine the optimal depth of PVDs under vacuum loading condition for soft ground improvement is presented and applied to specific case in 861 provincial street, Ward Cai Be, Tien Giang District. The soft soil includes two layers with total 12m thick and is allowed to drain on the top and bottom faces (double drainage). The result shows that the optimal depth of PVDs is about 10,5m with the small error of 0,7%


Author(s):  
Sudip Basack ◽  
Gautam Das ◽  
SK Asif Iqbal ◽  
Jyotirmoy Deb

Civil Infrastructure built on soft and compressible soil is likely to collapse due to undrained shear failure or unacceptable settlement of supporting foundations. Incorporation of adequate ground improvement technique with the aim of upgrading the strength and stiffness of the weak soil is essential in such cases. Amongst various established methods adopted worldwide for improving soft ground, using perforated piles is a relatively emerging technique. Such piles not only transmit the structural load into the subsoil beneath in a manner similar to the conventional piles, but also assist in radial consolidation of soft soil due to perforated side walls. This paper presents a brief overview on the investigations carried out on this new technique. Also, a typical case study has been presented. As observed, the axial pile capacity progressively increased while settlement reduction took place, with accelerated radial consolidation.


2001 ◽  
Vol 38 (2) ◽  
pp. 276-286 ◽  
Author(s):  
A Porbaha ◽  
T BS Pradhan ◽  
T Kishida

This study presents the results of a series of monotonic undrained triaxial compression tests on clay specimens improved by columnar reinforcement. The process of loading and stress redistribution of a fly ash – clay specimen (FCS), in comparison with a sand–clay specimen (SCS), is examined in terms of stress–strain characteristics, generation of excess pore-water pressure, effective and total earth pressures, development of stress concentration, and the normalized undrained shear strength of the improved soil. It was found, predictably, that the deviator stress of the composite specimens was influenced by the consolidation stress, replacement area ratio, and properties of the column material. The stress concentration at the top of the composite ground which depends on the loading stage reaches a peak after the consolidation state and is reduced due to stress redistribution between the column and the soft ground. In terms of improvement effects, the mean shear strengths of FCS and SCS relative to the clay specimen are three and seven times greater, respectively, for a replacement area ratio of 49%.Key words: composite ground, fly ash, soil improvement, soft ground, triaxial test.


2008 ◽  
Vol 15 (1) ◽  
pp. 43-54 ◽  
Author(s):  
S. Y. Liu ◽  
J. Han ◽  
D. W. Zhang ◽  
Z. S. Hong

Sign in / Sign up

Export Citation Format

Share Document