Spatial Landslide Susceptibility Modeling of Deokjeok-ri Creek Using Index of Entropy Method and Its Validation in Karisan-ri Creek

Author(s):  
Ananta Man Singh Pradhan ◽  
Yun-Tae Kim
Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 106 ◽  
Author(s):  
Qingfeng He ◽  
Zhihao Xu ◽  
Shaojun Li ◽  
Renwei Li ◽  
Shuai Zhang ◽  
...  

Landslides are a major geological hazard worldwide. Landslide susceptibility assessments are useful to mitigate human casualties, loss of property, and damage to natural resources, ecosystems, and infrastructures. This study aims to evaluate landslide susceptibility using a novel hybrid intelligence approach with the rotation forest-based credal decision tree (RF-CDT) classifier. First, 152 landslide locations and 15 landslide conditioning factors were collected from the study area. Then, these conditioning factors were assigned values using an entropy method and subsequently optimized using correlation attribute evaluation (CAE). Finally, the performance of the proposed hybrid model was validated using the receiver operating characteristic (ROC) curve and compared with two well-known ensemble models, bagging (bag-CDT) and MultiBoostAB (MB-CDT). Results show that the proposed RF-CDT model had better performance than the single CDT model and hybrid bag-CDT and MB-CDT models. The findings in the present study overall confirm that a combination of the meta model with a decision tree classifier could enhance the prediction power of the single landslide model. The resulting susceptibility maps could be effective for enforcement of land management regulations to reduce landslide hazards in the study area and other similar areas in the world.


2013 ◽  
Vol 57 (3) ◽  
pp. 371-385 ◽  
Author(s):  
Gabriel Legorreta Paulín ◽  
Marcus Bursik ◽  
María Teresa Ramírez-Herrera ◽  
Trevor Contreras ◽  
Michael Polenz ◽  
...  

2018 ◽  
Vol 10 (10) ◽  
pp. 1538 ◽  
Author(s):  
Dieu Tien Bui ◽  
Himan Shahabi ◽  
Ataollah Shirzadi ◽  
Kamran Chapi ◽  
Nhat-Duc Hoang ◽  
...  

This research aims at proposing a new artificial intelligence approach (namely RVM-ICA) which is based on the Relevance Vector Machine (RVM) and the Imperialist Competitive Algorithm (ICA) optimization for landslide susceptibility modeling. A Geographic Information System (GIS) spatial database was generated from Lang Son city in Lang Son province (Vietnam). This GIS database includes a landslide inventory map and fourteen landslide conditioning factors. The suitability of these factors for landslide susceptibility modeling in the study area was verified by the Information Gain Ratio (IGR) technique. A landslide susceptibility prediction model based on RVM-ICA and the GIS database was established by training and prediction phases. The predictive capability of the new approach was evaluated by calculations of sensitivity, specificity, accuracy, and the area under the Receiver Operating Characteristic curve (AUC). In addition, to assess the applicability of the proposed model, two state-of-the-art soft computing techniques including the support vector machine (SVM) and logistic regression (LR) were used as benchmark methods. The results of this study show that RVM-ICA with AUC = 0.92 achieved a high goodness-of-fit based on both the training and testing datasets. The predictive capability of RVM-ICA outperformed those of SVM with AUC = 0.91 and LR with AUC = 0.87. The experimental results confirm that the newly proposed model is a very promising alternative to assist planners and decision makers in the task of managing landslide prone areas.


2021 ◽  
Vol 12 (2) ◽  
pp. 857-876
Author(s):  
Sk Ajim Ali ◽  
Farhana Parvin ◽  
Jana Vojteková ◽  
Romulus Costache ◽  
Nguyen Thi Thuy Linh ◽  
...  

Author(s):  
J.-S. Lai ◽  
F. Tsai ◽  
S.-H. Chiang

This study implements a data mining-based algorithm, the random forests classifier, with geo-spatial data to construct a regional and rainfall-induced landslide susceptibility model. The developed model also takes account of landslide regions (source, non-occurrence and run-out signatures) from the original landslide inventory in order to increase the reliability of the susceptibility modelling. A total of ten causative factors were collected and used in this study, including aspect, curvature, elevation, slope, faults, geology, NDVI (Normalized Difference Vegetation Index), rivers, roads and soil data. Consequently, this study transforms the landslide inventory and vector-based causative factors into the pixel-based format in order to overlay with other raster data for constructing the random forests based model. This study also uses original and edited topographic data in the analysis to understand their impacts to the susceptibility modeling. Experimental results demonstrate that after identifying the run-out signatures, the overall accuracy and Kappa coefficient have been reached to be become more than 85 % and 0.8, respectively. In addition, correcting unreasonable topographic feature of the digital terrain model also produces more reliable modelling results.


2019 ◽  
Vol 11 (1) ◽  
pp. 750-764
Author(s):  
Ivica Milevski ◽  
Slavoljub Dragićević ◽  
Matija Zorn

Abstract This article presents a Geographic Information System (GIS) assessment of Landslide Susceptibility Zonation (LSZ) in North Macedonia. Because of the weak landslide inventory, statistical method (frequency ratio) is combined with Analytical Hierarchy Process (AHP). In this study, lithology, slope, plan curvature, precipitations, land cover, distance from streams, and distance from roads were selected as precondition factors for landslide occurrence. There are two advantages of the approach used. The first is the possibility of comparing of the results and cross-validation between the statistical and expert based methods with an indication of the advantages and drawbacks of each of them. The second is the possibility of better weighting of precondition factors for landslide occurrence, which can be useful in cases of weak landslide inventory. The final result shows that in the case of weak landslide inventory, LSZmap created with the combination of both models provide better overall results than each model separately.


Sign in / Sign up

Export Citation Format

Share Document