Computation of the Rotational Displacements of Gravity Retaining Walls by the Pseudo-Dynamic Method

Author(s):  
Anindya Pain ◽  
Deepankar Choudhury ◽  
S. K. Bhattacharyya
2018 ◽  
Vol 2 (2) ◽  
pp. 86
Author(s):  
Mila K. Wardani ◽  
Felicia T. Nuciferani ◽  
Mohamad F.N. Aulady

Landslide one of the natural disasters that caused many victims. Therefore, the landslide need a construction that can withstand landslide force. This study aims to plan retaining walls to prevent landslides in the farm area in Kandangan Subdistrict, Kediri Regency. The method used is to use slide analysis which is used to plan the retaining wall. In addition the planning of soil containment walls u ses several methods as a comparison. The results of this study indicate that the planning of ordinary soil retaining walls is still not enough to overcome slides. The minimum SF value that meets the safe limit of landslide prevention is 1.541 in the combination of 1/3 H terracing and the number of gabions as many as 7 with a total height of 2- 3 m .


1984 ◽  
Vol 49 (10) ◽  
pp. 2349-2354 ◽  
Author(s):  
František Vláčil ◽  
Karel Koňák

The selectivity coefficients of the nitrate and chloride ions and of anionic chloro complexes of Au(III), Rh(III), Pd(II), and Pt(IV) for ion exchange on Spheron DEAE in the chloride form are determined by the dynamic method. the complex anion species formed are identified and the ion exchange nature of the sorption of precious metals on this sorbent is confirmed based on the elution order of the precious metals as determined previously by the column chromatography on Spheron DEAE using hydrochloric acid as the mobile phase. The effect of the presence of perchlorate in the mobile phase during the liquid chromatography of precious metals and during the chromatographic determination of nitrate traces is explained.


1996 ◽  
Vol 61 (6) ◽  
pp. 844-855 ◽  
Author(s):  
Olga Šolcová ◽  
Petr Schneider

It was shown that the sampling loop, detector and connecting elements in the chromatographic set-up for determination of transport parameters by the dynamic method significantly influence the response peaks from columns packed with porous or nonporous particles. A method, based on the use of convolution theorem, was developed which can take these effects into account. The applicability of this method was demonstrated on the case of axial dispersion in a single-pellet-string column (SPSR) packed with nonporous particles. It is possible to handle also responses from columns packed with porous particles by a similar procedure.


Sign in / Sign up

Export Citation Format

Share Document