Effect of Using Cement Reactive Powders on Rheological Performance of Asphalt Mastics

Author(s):  
Behrouz Farahi ◽  
Clayton Cloutier ◽  
Konstantin Sobolev ◽  
Ahmed Faheem ◽  
Steven Kosmtaka ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 869
Author(s):  
Minghua Wei ◽  
Shaopeng Wu ◽  
Haiqin Xu ◽  
Hechuan Li ◽  
Chao Yang

Steel slag is the by-product of the steelmaking industry, the negative influences of which prompt more investigation into the recycling methods of steel slag. The purpose of this study is to characterize steel slag filler and study its feasibility of replacing limestone filler in asphalt concrete by evaluating the resistance of asphalt mastic under various aging methods. Firstly, steel slag filler, limestone filler, virgin asphalt, steel slag filler asphalt mastic and limestone filler asphalt mastic were prepared. Subsequently, particle size distribution, surface characterization and pore characterization of the fillers were evaluated. Finally, rheological property, self-healing property and chemical functional groups of the asphalt mastics with various aging methods were tested via dynamic shear rheometer and Fourier transform infrared spectrometer. The results show that there are similar particle size distributions, however, different surface characterization and pore characterization in the fillers. The analysis to asphalt mastics demonstrates how the addition of steel slag filler contributes to the resistance of asphalt mastic under the environment of acid and alkaline but is harmful under UV radiation especially. In addition, the pore structure in steel slag filler should be a potential explanation for the changing resistance of the asphalt mastics. In conclusion, steel slag filler is suggested to replace limestone filler under the environment of acid and alkaline, and environmental factor should be taken into consideration when steel slag filler is applied to replace natural fillers in asphalt mastic.


Measurement ◽  
2021 ◽  
pp. 109587
Author(s):  
Rosa Veropalumbo ◽  
Francesca Russo ◽  
Cristina Oreto ◽  
Salvatore Antonio Biancardo ◽  
Weibin Zhang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5836
Author(s):  
Peifeng Cheng ◽  
Yiming Li ◽  
Zhanming Zhang

To improve the thermal-aging stability and rheological performance of styrene–butadiene rubber (SBR)-modified asphalt, phenolic resin (PF) was introduced in the process of preparing SBR-modified asphalt by melt blending. The effect of PF and SBR on the high and low-temperature rheological performance of the asphalt binder before and after aging was evaluated by a temperature and frequency sweep using a dynamic shear rheometer (DSR). Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and fluorescence microscopy (FM) were used to further investigate the effect of PF and SBR on the thermal stability and morphological characteristics of the asphalt binder. The results showed that the addition of PF can enhance the high-temperature deformation resistance and short-term aging resistance of SBR-modified asphalt. Moreover, PF and SBR form an embedded network structure within the asphalt binder and alleviate the deterioration of the polymer during the aging process. Compared with SBR-modified asphalt, the chemical system of composite-modified asphalt is more stable, and it can remain stable with an aging time of less than 5 h.


2013 ◽  
Vol 752 ◽  
pp. 209-216 ◽  
Author(s):  
Róbert Géber ◽  
László A. Gömze

The present research work deals with the examination and rheological modelling of flow properties of asphalt mastics which are the most important components of asphalt concretes. Asphalt mastics are mixtures of fine grained mineral filler particles (d<0,063 mm) and bitumen, having a stabilizing role in asphalt mixtures and largely determining the cohesion between mineral particles and bitumen. During our examinations two types of mineral fillers – limestone and dolomite – as well as standard bitumen were tested, which are extensively used in Hungarian road construction. Asphalt mastic mixtures were prepared out of these materials and they were tested with dynamic shear rheometer (DSR). According to the test results, rheological models of mastics were determined. It has been established that at different test temperatures and shear rate ranges asphalt mastics behave as Herschel-Bulkley and Bingham-type materials.


2017 ◽  
Vol 790 ◽  
pp. 012009 ◽  
Author(s):  
R Geber ◽  
A Simon ◽  
I Kocserha ◽  
A Buzimov

2022 ◽  
Vol 317 ◽  
pp. 125958
Author(s):  
Pouria Hajikarimi ◽  
Mehrdad Ehsani ◽  
Yassine EL Haloui ◽  
Fateh Fakhari Tehrani ◽  
Joseph Absi ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qin Yu ◽  
Xiangguo Lu ◽  
Yubao Jin ◽  
Cui Zhang ◽  
Kuo Liu ◽  
...  

Microspheres have excellent sealing performances such as injectivity, bridging-off, deep migration, and deformation performances, but their plugging effects are limited by the fast swelling rate and poor viscoelasticity. In this study, we synthesized a novel modified microsphere with polymerizable surfactant monomers and cationic monomers. We investigated the influence factors on the swelling performance and rheological properties of the microspheres and explored the ways to improve the plugging performance of hydrophobic-associating microspheres. The association behaviors in aqueous media of poly(acrylamide-co-methacry loyloxyethyl trimethyl ammonium chloride-co-n-dodecyl poly(etheroxy acrylate) P(AM-DMC-DEA) are proven to be mediated by the DEA content. Moreover, the hydrophobic association interaction has a strong effect on the performance of microspheres such as swelling properties, the rheological performance, and plugging properties. The swelling properties of microsphere studies exhibited the slow swelling rate. The rheological performance measurements showed significant improvements; yield stress, and creep compliance increased rapidly from 404 to 2060 Pa and 3.89 × 10−4 to 1.41 × 10−2 1/Pa, respectively, with DEA content in microspheres rising from 0.0% to 0.22%. The plugging properties of microspheres were enhanced by the slow swelling performance and good viscoelasticity.


Sign in / Sign up

Export Citation Format

Share Document