Reflection of Irregular Waves at Partially Reflecting Structures Including Oblique Wave Approach

Author(s):  
Hans-Joachim Scheffer ◽  
Sören Kohlhase
1982 ◽  
Vol 1 (18) ◽  
pp. 50
Author(s):  
E. Tautenhain ◽  
S. Kohlhase ◽  
H.W. Partenscky

Besides wave impact forces, erosion of the inner side of a sea dike is a serious cause of destruction. Therefore, wave run-up and overtopping effects have to be considered with respect to the safety of a dike. Strong relations were found between both these influences (TAUTENHAIN et.al., 1980, 1981, 1982), based on experiments in a wave flume and using an energy conservation concept. However, under natural conditions, an oblique wave approach has to be considered. This paper deals with the influence of wave direction on wave runup on a smooth dike slope in order to provide a basis for calculating the overtopping rates for both regular and irregular waves.


1986 ◽  
Vol 1 (20) ◽  
pp. 162 ◽  
Author(s):  
Hans-Joachim Scheffer ◽  
Soren Kohlhase

The reflection of irregular seas is increasingly considered in coastal engineering and harbour design as well with respect to wave pattern at the structure and energy dissipation as regarding the dimensioning of structures exposed to waves. It becomes evident that the three-dimensional sea state (oblique wave approach, irregularity of the waves) at partially-reflecting structures of a complex design cannot be described by means of a constant reflection coefficient alone, as is common practice. This is due to the fact that the coefficient is largely frequency-dependent and the physically effective reflection point of the structure cannot be clearly specified. In the light of this, basic investigations on wave reflection have been performed with different partially-reflecting structures, wave spectra and wave approach angles. In addition to laboratory experiments using both a wave flume and a wave basin, a theoretical solution based on diffraction theory was determined to describe the wave field in the reflection area of various structures. The investigations were restricted to non-breaking wave conditions. The reflection behaviour of structures is expressed by a complex reflection coefficient, containing two parameters, which have to be determined by model tests.


Author(s):  
E. Tautenhain ◽  
S. Kohlhase ◽  
H. W. Partenscky
Keyword(s):  
Run Up ◽  

Author(s):  
Guttorm Gryto̸yr

The term ‘riser recoil’ refers to the situation when the lower end of a top tensioned riser is released, and the riser is lifted up by the riser tensioner and/or top motion compensator system on the supporting vessel. The elastic energy stored in the riser is then released, and the riser ‘recoils’. This paper focuses on the case of planned disconnect, and builds on ref. [1] which was based on a simplified riser analysis using a rigid body to represent the riser. In the present paper, the methodology has been applied to an elastic riser model in the riser analysis software RIFLEX, from MARINTEK in Trondheim, Norway, which includes axial damping elements required for modeling of the tensioner systems. Completion and Work Over (CWO) risers are unique in the sense that they may be simultaneously connected to both the riser tensioner system and the top motion compensator system of a drilling vessel. A Marine Drilling riser, on the other hand, is only connected to the riser tensioner system. Typically the riser tensioner system has a stroke of ± 8–9 m, whereas the top motion compensator system has only ± 3.5–4 m. It is imperative that the connector is lifted clear of the subsea structure in order to avoid damage to the equipment after the riser has been disconnected. The operating window for planned disconnect of CWO risers is severely limited by the available stroke of the top motion compensator. One of the purposes of the disconnect analysis is to establish the maximum wave height at which there is still sufficient clearance between the connector and the subsea structure after disconnect. Previous experience has shown that this may be the governing limitation for workover operations. The analysis may also establish a maximum tension level, and seastate, to avoid hard stroke-out of the top motion compensator cylinders. This requires an elastic riser model, since a rigid body will yield unphysically large impulse loads in case of stroke-out. The current industry practice is to use a regular wave approach in the analysis. In accordance with ref. [1], the present analysis is performed with irregular wave analyses. The results are documented through a case study of a typical CWO riser system connected to a semi-submersible in typical North Sea environmental conditions. The semi-submersible and the CWO riser system are exposed to irregular waves. Comparison of the resulting allowable wave height shows that using the approach presented here with an elastic riser model yields less conservative results than the previous methodology with a rigid body model. This should be coupled to the findings with the rigid riser model, ref. [1], that irregular waves yield a considerable increase in the operating window, and the resulting operability, compared to a regular wave analysis. Hence, using a regular wave approach combined with a simplified riser model that neglects the flexibility of the riser is expected to yield overly conservative results for the EQDP elevation after disconnect.


Author(s):  
Gabriel Rombado ◽  
Nathan Cooke ◽  
Dharma Pasala ◽  
Xianglei Ni ◽  
Andrew Low ◽  
...  

Accurate computation of tensile armor wire stresses remains a major challenge in flexible riser fatigue life predictions and integrity management. Accuracy of the results relies heavily on capturing the kinematics of the flexible’s helically contra-wound tensile armor layers and their interaction with the other metallic and thermo-plastic layers in a dynamic simulation. The standard industry practice to assess the fatigue life of flexibles is to use high fidelity 3D Finite Element Models (FEMs) to capture the complex kinematics and produce accurate stresses. However, direct simulation of flexible riser detailed FEMs is limited to regular wave analyses and computation of wire stress time-histories subjected to irregular waves have been computationally infeasible. This is due to the complexity of the nonlinear FEM and the long simulation time of the irregular wave environment coupled with large number of fatigue sea states. As a result, simplified approaches which do not directly simulate the local model and instead assume that wire stresses can be interpolated based on static stress versus curvature material curves within a pre-defined tension /pressure envelope have been utilized. This paper utilizes Nonlinear Dynamic Substructuring (NDS), a simulation-based approach that that extends the framework of dynamic substructuring to nonlinear problems. NDS enables the efficient nonlinear dynamic simulation of multiple pitch lengths of detailed flexible riser FEM subjected to irregular wave inputs and the computation of wire stress time-histories at any location on the local model. In this paper, a 14-inch diameter flexible riser under consideration by ExxonMobil is subjected to vessel motion and wave load in irregular wave environments and is modeled using a detailed 3D FEM and simulated via NDS. The flexible riser design features four tensile armor layers to mitigate localized lateral buckling of the wires near the touch down point. Tension and curvature time-histories of the riser near the hang-off, calculated from a conventional beam model global analysis, is used to drive a 5.1m long local model. Irregular wave wire stress time-histories extracted at the corners of the tensile armor wires are used to compute the fatigue life of the flexible. To demonstrate the inaccuracies associated with the regular wave approach, fatigue life is computed via the regular wave approach and compared against the irregular wave approach. It is shown that the NDS capability to efficiently compute irregular waves mitigates over- and under-predictions due to environment idealizations leading to a more accurate and reliable flexible riser life prediction and structural integrity assessment.


1976 ◽  
Vol 1 (15) ◽  
pp. 73 ◽  
Author(s):  
E. Van Hijum

In order to obtain design criteria for artificial gravel beaches, a research programme was drawn up to study the behaviour of gravel beaches under wave attack. The present paper gives the main results of the investigations into beach formation and equilibrium profile characteristics, including the longshore transport rate of beach material under regular wave attack with varying angles of wave approach,


Author(s):  
Guttorm Grytoyr ◽  
Anne Marthine Rustad ◽  
Nils Sodahl ◽  
Per Christian Bunaes

The term ‘riser recoil’ refers to the situation when the lower end of a top tensioned riser is released, and the riser is lifted up by the riser tensioner and/or top motion compensator system on the supporting vessel. The elastic energy stored in the riser is then released, and the riser ‘recoils’. This paper focuses on the case of planned disconnect. Recoil of Marine Drilling Risers has been the subject of several research papers over the past two decades. Some examples are listed in references [2] through [7]. Completion and Work Over (CWO) risers are unique in the sense that they may be simultaneously connected to both the riser tensioner system and the top motion compensator system of a drilling vessel. A Marine Drilling riser, on the other hand, is only connected to the riser tensioner system. Typically the riser tensioner system has a stroke of ± 8–9 m, whereas the top motion compensator system has only ± 3.5–4 m. It is imperative that the connector is lifted clear of the subsea structure in order to avoid damage to the equipment after the riser has been disconnected. The operating window for planned disconnect of CWO risers is severely limited by the available stroke of the top motion compensator. One of the purposes of the disconnect analysis is to establish the maximum wave height at which there is still sufficient clearance between the connector and the subsea structure after disconnect. Previous experience has shown that this may be the governing limitation for workover operations. The current industry practice is to use a regular wave approach in the analysis. The wave frequency is varied in order to find the maximum response, and hence one is actually searching for the extreme response, without paying attention to the probability that this will occur. In this paper a new method is presented, where the analysis is based on an irregular wave approach and the Monte Carlo technique, using time-domain simulations. Acceptance criteria are established based on a stochastic analysis, and are based on target levels of probability of exceedance. The results are documented through a case study of a typical CWO riser system connected to a semi-submersible in typical North Sea environmental conditions. The semi-submersible and the CWO riser system are exposed to both regular and irregular waves. Comparison of the resulting allowable wave height indicates that using the approach presented here with irregular waves will give a considerable increase in the operating window, and the resulting operability, compared to a regular wave analysis.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-89-C8-92 ◽  
Author(s):  
R. V. VEDRINSKII ◽  
L. A. BUGAEV

2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


Sign in / Sign up

Export Citation Format

Share Document