Methodology for Disconnect Analysis of CWO Risers in Random Seas

Author(s):  
Guttorm Grytoyr ◽  
Anne Marthine Rustad ◽  
Nils Sodahl ◽  
Per Christian Bunaes

The term ‘riser recoil’ refers to the situation when the lower end of a top tensioned riser is released, and the riser is lifted up by the riser tensioner and/or top motion compensator system on the supporting vessel. The elastic energy stored in the riser is then released, and the riser ‘recoils’. This paper focuses on the case of planned disconnect. Recoil of Marine Drilling Risers has been the subject of several research papers over the past two decades. Some examples are listed in references [2] through [7]. Completion and Work Over (CWO) risers are unique in the sense that they may be simultaneously connected to both the riser tensioner system and the top motion compensator system of a drilling vessel. A Marine Drilling riser, on the other hand, is only connected to the riser tensioner system. Typically the riser tensioner system has a stroke of ± 8–9 m, whereas the top motion compensator system has only ± 3.5–4 m. It is imperative that the connector is lifted clear of the subsea structure in order to avoid damage to the equipment after the riser has been disconnected. The operating window for planned disconnect of CWO risers is severely limited by the available stroke of the top motion compensator. One of the purposes of the disconnect analysis is to establish the maximum wave height at which there is still sufficient clearance between the connector and the subsea structure after disconnect. Previous experience has shown that this may be the governing limitation for workover operations. The current industry practice is to use a regular wave approach in the analysis. The wave frequency is varied in order to find the maximum response, and hence one is actually searching for the extreme response, without paying attention to the probability that this will occur. In this paper a new method is presented, where the analysis is based on an irregular wave approach and the Monte Carlo technique, using time-domain simulations. Acceptance criteria are established based on a stochastic analysis, and are based on target levels of probability of exceedance. The results are documented through a case study of a typical CWO riser system connected to a semi-submersible in typical North Sea environmental conditions. The semi-submersible and the CWO riser system are exposed to both regular and irregular waves. Comparison of the resulting allowable wave height indicates that using the approach presented here with irregular waves will give a considerable increase in the operating window, and the resulting operability, compared to a regular wave analysis.

Author(s):  
Guttorm Gryto̸yr

The term ‘riser recoil’ refers to the situation when the lower end of a top tensioned riser is released, and the riser is lifted up by the riser tensioner and/or top motion compensator system on the supporting vessel. The elastic energy stored in the riser is then released, and the riser ‘recoils’. This paper focuses on the case of planned disconnect, and builds on ref. [1] which was based on a simplified riser analysis using a rigid body to represent the riser. In the present paper, the methodology has been applied to an elastic riser model in the riser analysis software RIFLEX, from MARINTEK in Trondheim, Norway, which includes axial damping elements required for modeling of the tensioner systems. Completion and Work Over (CWO) risers are unique in the sense that they may be simultaneously connected to both the riser tensioner system and the top motion compensator system of a drilling vessel. A Marine Drilling riser, on the other hand, is only connected to the riser tensioner system. Typically the riser tensioner system has a stroke of ± 8–9 m, whereas the top motion compensator system has only ± 3.5–4 m. It is imperative that the connector is lifted clear of the subsea structure in order to avoid damage to the equipment after the riser has been disconnected. The operating window for planned disconnect of CWO risers is severely limited by the available stroke of the top motion compensator. One of the purposes of the disconnect analysis is to establish the maximum wave height at which there is still sufficient clearance between the connector and the subsea structure after disconnect. Previous experience has shown that this may be the governing limitation for workover operations. The analysis may also establish a maximum tension level, and seastate, to avoid hard stroke-out of the top motion compensator cylinders. This requires an elastic riser model, since a rigid body will yield unphysically large impulse loads in case of stroke-out. The current industry practice is to use a regular wave approach in the analysis. In accordance with ref. [1], the present analysis is performed with irregular wave analyses. The results are documented through a case study of a typical CWO riser system connected to a semi-submersible in typical North Sea environmental conditions. The semi-submersible and the CWO riser system are exposed to irregular waves. Comparison of the resulting allowable wave height shows that using the approach presented here with an elastic riser model yields less conservative results than the previous methodology with a rigid body model. This should be coupled to the findings with the rigid riser model, ref. [1], that irregular waves yield a considerable increase in the operating window, and the resulting operability, compared to a regular wave analysis. Hence, using a regular wave approach combined with a simplified riser model that neglects the flexibility of the riser is expected to yield overly conservative results for the EQDP elevation after disconnect.


Author(s):  
Gabriel Rombado ◽  
Nathan Cooke ◽  
Dharma Pasala ◽  
Xianglei Ni ◽  
Andrew Low ◽  
...  

Accurate computation of tensile armor wire stresses remains a major challenge in flexible riser fatigue life predictions and integrity management. Accuracy of the results relies heavily on capturing the kinematics of the flexible’s helically contra-wound tensile armor layers and their interaction with the other metallic and thermo-plastic layers in a dynamic simulation. The standard industry practice to assess the fatigue life of flexibles is to use high fidelity 3D Finite Element Models (FEMs) to capture the complex kinematics and produce accurate stresses. However, direct simulation of flexible riser detailed FEMs is limited to regular wave analyses and computation of wire stress time-histories subjected to irregular waves have been computationally infeasible. This is due to the complexity of the nonlinear FEM and the long simulation time of the irregular wave environment coupled with large number of fatigue sea states. As a result, simplified approaches which do not directly simulate the local model and instead assume that wire stresses can be interpolated based on static stress versus curvature material curves within a pre-defined tension /pressure envelope have been utilized. This paper utilizes Nonlinear Dynamic Substructuring (NDS), a simulation-based approach that that extends the framework of dynamic substructuring to nonlinear problems. NDS enables the efficient nonlinear dynamic simulation of multiple pitch lengths of detailed flexible riser FEM subjected to irregular wave inputs and the computation of wire stress time-histories at any location on the local model. In this paper, a 14-inch diameter flexible riser under consideration by ExxonMobil is subjected to vessel motion and wave load in irregular wave environments and is modeled using a detailed 3D FEM and simulated via NDS. The flexible riser design features four tensile armor layers to mitigate localized lateral buckling of the wires near the touch down point. Tension and curvature time-histories of the riser near the hang-off, calculated from a conventional beam model global analysis, is used to drive a 5.1m long local model. Irregular wave wire stress time-histories extracted at the corners of the tensile armor wires are used to compute the fatigue life of the flexible. To demonstrate the inaccuracies associated with the regular wave approach, fatigue life is computed via the regular wave approach and compared against the irregular wave approach. It is shown that the NDS capability to efficiently compute irregular waves mitigates over- and under-predictions due to environment idealizations leading to a more accurate and reliable flexible riser life prediction and structural integrity assessment.


Author(s):  
Anskey A. Miranda ◽  
Fred P. Turner ◽  
Nigel Barltrop

This paper presents a study of the analysis methodologies used to predict the most likely response of flexibles in a subsea environment, with the aim of determining an efficient and reliable prediction methodology. The most accurate method involves simulating multiple wave realisations of a real world sea state, i.e. irregular waves, and post-processing the results to determine the most probable maximum (MPM). Due to the computationally intensive nature of this approach, however, regular wave analysis is typically used to determine flexible response. This approach considers the maximum wave within a design storm at a desired period; the choice of periods may leave room for uncertainty in the conservatism of the approach. With proper screening, regular wave analysis can be a valid yet overly conservative approach resulting in over design and additional cost. However, if screened incorrectly, there is a possibility that the choice of periods could give results that are under conservative. In addition to regular wave analysis, the paper presents two alternative methodologies to determine the most likely response, with the focus on reducing the computational resources required. The first alternative is an ‘Irregular Wave Screen’ approach in which the wave train is screened at areas of interest for waves within a user defined threshold of the maximum wave height, in addition to other user defined parameters. Only waves within these parameters are simulated to determine responses. The second alternative is the ‘New Wave’ approach, which models the most probable wave elevation around the maximum wave crest. The calculated new wave is then placed at the desired location to determine responses. The responses of the Regular, Irregular Wave Screen and New Wave methodologies are compared with the Irregular MPM approach to determine their feasibility to predict the response of flexibles in a real world irregular sea state with lower computational requirements.


1988 ◽  
Vol 1 (21) ◽  
pp. 48 ◽  
Author(s):  
Akira Kimura

The probability distribution of the maximum run of irregular wave height is introduced theoretically. Probability distributions for the 2nd maximum, 3rd maximum and further maximum runs are also introduced. Their statistical properties, including the means and their confidence regions, are applied to the verification of experiments with irregular waves in the realization of a "severe sea state" in the test.


Author(s):  
Zhimin Tan ◽  
Yucheng Hou ◽  
John Zhang ◽  
Terry Sheldrake

This paper presents the fatigue evaluation of a flexible riser subjected to bi-modal sea states, where the local wind and swell conditions act simultaneously, and is observed in many offshore regions including Brazil and West Africa. Due to the irregularity of the riser responses, the traditional, regular wave approach for assessing the fatigue damage of a flexible pipe cannot be applied without significant simplifications. A typical deviation would be to treat the combined swell and wind conditions at sea as two sets of separate cases. The regular wave approach can then be applied and the summation of the damage of both cases defined as the final damage of the pipe. As an alternative, this paper presents a more theoretically accurate irregular wave approach. The entire irregular wave simulation was first performed using the commercial software, OrcaFlex™, together with a tensile wire stress model developed in-house. The model implements the pipe bending hysteresis behavior during dynamic excitation, producing corresponding time history stress results, which are used to assess the fatigue damage using a rain-flow counting method. Two case studies are presented, the first being a dynamic simulation performed with two wave trains generated based respectively on the given swell and wind sea spectrums. In the second case study, a single wave train is generated based on the combined spectrum of the swell and wind sea states. Both results are compared with those obtained by the traditional regular wave approach and a preferred analysis method is recommended based on the conservatism and time efficiency.


Author(s):  
Shaosong Zhang ◽  
Yongming Cheng ◽  
Yuanlang Cai ◽  
Ning He ◽  
Xiaolong Yang ◽  
...  

Abstract Steel Catenary Risers (SCRs) are widely used in deepwater and ultra-deepwater field developments. The dynamic strength of SCRs is a concern in terms of the global performance. The analysis results are quite scattered in many cases due to the nature of the irregular wave stochastic properties. The widely accepted approach to predict the riser dynamic response in the irregular seas is to run the multiple time domain simulations based on different random seeds. This paper will address the impacts on the predicted riser dynamic response due to the random seeds selection. The discussion is based on the independent engineering verification work for a production Semi project in South China Sea. The site specific irregular waves are usually defined by not only the wave spectrum, but also the properties of individual waves, such as maximum wave height and minimum wave trough, which have big impacts on the riser extreme response. The code recommended approach for irregular wave simulation is based on the linear wave theory, which can ensure the match of the target wave spectrum, for example, Hs, Tp (or Tz), wave peakness for JONSWAP spectrum. But the variation of simulated individual wave properties to the specified value can be significant or there is no specified value to match. The simulated irregular waves based on linear theory is also a distortion to the real wave elevation time trace, such as the asymmetry of the wave crest and trough, especially for the tropical cyclone sea states. Some riser response, such as the compression load at riser touch down zone, can be significantly impacted by the nonlinear nature of the waves and the variation to the target individual wave properties. This paper will discuss the random wave simulation and its impacts on riser dynamic response. A SCR strength design case is presented for illustration in this paper. Key parameters are identified to show the correlation with the SCR dynamic response. The conclusion is finally drawn from the work presented in this paper.


1988 ◽  
Vol 1 (21) ◽  
pp. 29 ◽  
Author(s):  
Akira Seyama ◽  
Akira Kimura

Wave height change of the zero-down-cross waves on uniform slopes were examined experimentally. The properties of shoaling, breaking and decay after breaking for a total of about 4,000 irregular waves of the Pierson-Moskowitz type on 4 different slopes (1/10, 1/20, 1/30 and 1/50) were investigated. The shoaling property of the zero-down-cross waves can be approximated by the linear wave theory. However, the properties of breaking and decay after breaking differ considerably from those for periodic waves. The wave height water depth ratio (H/d) at the breaking point for the zero-down-cross waves is about 30% smaller than that for periodic waves on average despite the slopes. Wave height decay after breaking also differs from that for periodic waves and can be classified into three regions, i.e. shoaling, plunging and bore regions. Experimental equations for the breaking condition and wave height change after breaking are proposed in the study. A new definition of water depth for the zero-crossing wave analysis which can reduce the fluctuation in the plotted data is also proposed.


1972 ◽  
Vol 12 (04) ◽  
pp. 329-344 ◽  
Author(s):  
F.H. Hsu ◽  
K.A. Blenkarn

Abstract A procedure for calculation of peak mooring force caused by the long-period vessel drift oscillation is described. The long-period drift oscillation is induced by the action of groups of high waves in random seas. The procedure is developed from consideration of momentum flux change in ocean waves. Introduction The demand on the offshore petroleum industry for mooring under trying conditions has created the need for a clearer understanding of the physical phenomena involved in mooring large vessels under phenomena involved in mooring large vessels under severe conditions in the open ocean. The offshore industry has experienced major difficulties in mooring under storm conditions and has suffered extensive financial loss. Over the years, attempts have been made to solve offshore mooring problems, utilizing a variety of vessels and mooring techniques. Results of experience and practice offer conflicting indications of the relative merits of various mooring systems. Various engineering and scientific studies have contributed toward an understanding of many factors influencing forces; however, it appears that previous studies have, for the most part, ignored an important phenomenon, which under certain situations is the governing factor to be considered in design of mooring systems. Specifically, there has been little attention devoted to the effects of slow vessel drift oscillations in random or irregular seas. It is this phenomenon that is the prime subject of the present phenomenon that is the prime subject of the present paper. paper. Fig. 1 illustrates results obtained from model tests of a moored vessel in irregular waves. Shown in the figure, as a function of time, are the variations of wave height and period, the surge or drift position of the vessel, and the tension in the primary mooring line. It will be noted that the surge primary mooring line. It will be noted that the surge motion of the vessel involves both a direct wave-induced short-period surge and a gradual long-period drift oscillation taking place over a period of 1 minute or more in prototype time. This type of drift motion is also found in the motion records of moored ships in an actual ocean storm environment. Moreover, the basic behavior of slow oscillations is not unique to moored vessels. For instance, such behavior has been observed in tests involving vessels towed through irregular waves with a constant towing force. In such case, it has been observed that the vessel velocity exhibits slow oscillations with periods in the range of 1 to 2 minutes. When an ocean wave is propagated toward a moored vessel, part of the wave is reflected, the remainder being transmitted on beyond the vessel The conservation of wave momentum results in a net force applied to the vessel for each wave. For regular waves the consequence is a steady drift force resulting in a static shift of the average position of the moored vessel. For irregular waves, position of the moored vessel. For irregular waves, on the other hand, a varying sequence of drift forces arises in correspondence to changes in wave height and period. Investigations leading to this paper show that the ensuing long period drift oscillation of the vessel can, for many cases, be the completely dominating influence in determining maximum mooring line tension. SPEJ P. 329


Author(s):  
Krassimir Doynov ◽  
Christoffer Nilsen-Aas ◽  
Rune Haakonsen ◽  
Wan Kan ◽  
Robert Bjærum

Flexible risers are being deployed in more and more demanding applications in terms of water depth, remote locations, temperature, pressure and corrosive fluids. Focus has been put on long term riser integrity in general, and on fatigue performance in particular, as knowledge of pipe behavior and properties has been advanced over the last decade. In this context, accurate and consistent estimation of riser global and local response to external loading is essential. A methodology has been developed to efficiently calculate irregular wave stress time histories of tensile armour wires for flexible risers. The stress time histories are calculated directly from the global loads which are usually generated by using commercially available well proven global analysis tools. The methodology elevates the dynamic analysis of flexible risers from the conventional regular-wave approach to irregular-wave time-domain approach. This in turn allows a better assessment of the fatigue performance and provides a better fit-for-service assessment or an opportunity to reduce design conservatism. This methodology also allows for consistent stochastic fatigue evaluations to be performed in time domain simulations using the well established stochastic analysis approach. All flexible riser non-linear hysteretic effects are included and phase shift between tension and curvature is also fully accounted for. The key ingredient lies in the generation of transfer functions of all stress components using a validated local analysis (LA) tool based on finite element method. This is done because direct use of the LA tool for long time domain simulations is very computationally intensive and impractical. The stress transfer functions allow direct mapping of the tension and curvature readings to individual stress components, which are combined in a phase consistent manner to obtain the total stress-time histories. This methodology should also work well for other systems having complicated cross sections such as dynamic umbilicals and integrated production bundle, etc. Accuracy of the proposed methodology should be equivalent to that of using the LA tool directly provided that the stress transfer functions are constructed appropriately. In comparison with the traditional regular-wave methodology, this irregular wave approach has been shown to provide a significant fatigue-life improvement for the flexible riser tensile-wire in a deep water West Africa application.


1974 ◽  
Vol 1 (14) ◽  
pp. 98
Author(s):  
C. Campos Morais

The paper deals with two-dimensional tests on a scale model of a dolos breakwater. It is related with the construction of a large harbour at Sines for tankers with up to 1 million dwt, ore ships with up to 300,000 dwt, general cargo, etc. The main breakwater is design ed with 40 t dolos, in order to withstand waves with up to 1 1 m significant wave height(100 years return period). Considerations on wave data and on modelling the spectrum ( Pierson-Moskowitz ) precede the presentation of three sets of tests on LNEC's irregular wave flume. Main results are compared with those from regular wave tests. The most important conclusions are stressed: influence of pla_ cement on dolos damages, irrelevance of maintenance, importance of the singular zone of the dolos support base, disadjustment of Hudson's formula for calculation of dolos weight using H as significant wave height,and importance of individual movements for the risk of breaking of individual blocks.


Sign in / Sign up

Export Citation Format

Share Document