High quality ZnTe‐ZnSe strained‐layer superlattice with buffer layer prepared by hot wall epitaxy

1989 ◽  
Vol 54 (3) ◽  
pp. 239-241 ◽  
Author(s):  
Y. H. Wu ◽  
H. Yang ◽  
A. Ishida ◽  
H. Fujiyasu ◽  
S. Nakashima ◽  
...  
1991 ◽  
Vol 58 (24) ◽  
pp. 2755-2757 ◽  
Author(s):  
I. Sugiyama ◽  
A. Hobbs ◽  
O. Ueda ◽  
K. Shinohara ◽  
H. Takigawa

1988 ◽  
Vol 144 ◽  
Author(s):  
Yoshiro Ohmachi ◽  
Yoshiaki Kadota ◽  
Yoshio Watanabe ◽  
Hiroshi Okamoto

ABSTRACTEpitaxial growth using thermal annealing and a strained layer superlattice is studied to obtain high-quality GaAs device layers on Si substrates. Crystalline quality of GaAs-on-Si is found to improve with thermal cyclic annealing at temperatures higher than the growth temperature and cooling down to 300°C. It is also found that the optimum InGaAs/GaAs strained layer superlattice buffer structure is one whose total thickness is several times the calculated critical thickness for the average In-mole fraction of the SLS buffer. Configurations and structures of dislocation reductions are ex-amined by TEM observations. A GaAs solar cell is successfully constructed and is found to show total area efficiencies of 18.3% under AM 0 and 20.0% under AM 1.5 conditions.


1990 ◽  
Vol 41-42 ◽  
pp. 534-538 ◽  
Author(s):  
Shigeo Hayashi ◽  
Takao Sakamoto ◽  
Shizuo Fujita ◽  
Shigeo Fujita

2005 ◽  
Vol 891 ◽  
Author(s):  
Tetsuya D. Mishima ◽  
Madhavie Edirisooriya ◽  
Michael B. Santos

ABSTRACTStructural defects in InSb quantum well (QW) samples have been investigated by transmission electron microscopy (TEM). Using molecular beam epitaxy, an InSb QW with remotely-doped Al0.09In0.91Sb barriers was grown on a GaAs (001) substrate with buffer layers consisting of, in order from the substrate: 1 μm of GaSb, 1 μm of AlSb, 50 nm of GaSb-AlSb strained layer superlattice (SLS), and 3 μm of Al0.09In0.91Sb. Cross-sectional TEM analysis indicates that high densities of threading dislocations (TDs) are created at the two highly lattice-mismatched interfaces, the Al0.09In0.91Sb/GaSb-AlSb SLS and the GaSb/GaAs interfaces. Pairs of stereo images taken from plan-view TEM (PV-TEM) specimens show that TDs propagate through the InSb QW layer. The densities of TDs and micro-twin (MT) defects measured by PV-TEM are 9×108/cm2 and 4×103/cm, respectively. These values are worse than those in an InSb QW layer grown with a different buffer layer by a factor of ∼4. The different buffer layer contains an InSb interlayer that effectively filters out both TDs and MTs. Adopting an interlayer structure and reducing the GaSb and AlSb layer thickness may make it possible to fabricate a lower-defect-density yet thinner InSb QW sample with the type of buffer layer examined in this study.


1991 ◽  
Vol 40 (3) ◽  
pp. 441
Author(s):  
TIAN LIANG-GUANG ◽  
ZHU NAN-CHANG ◽  
CHEN JING-YI ◽  
LI RUN-SHEN ◽  
XU SHUN-SHENG ◽  
...  

Author(s):  
Hamish L. Fraser

The topic of strain and lattice parameter measurements using CBED is discussed by reference to several examples. In this paper, only one of these examples is referenced because of the limitation of length. In this technique, scattering in the higher order Laue zones is used to determine local lattice parameters. Work (e.g. 1) has concentrated on a model strained-layer superlattice, namely Si/Gex-Si1-x. In bulk samples, the strain is expected to be tetragonal in nature with the unique axis parallel to [100], the growth direction. When CBED patterns are recorded from the alloy epi-layers, the symmetries exhibited by the patterns are not tetragonal, but are in fact distorted from this to lower symmetries. The spatial variation of the distortion close to a strained-layer interface has been assessed. This is most readily noted by consideration of Fig. 1(a-c), which show enlargements of CBED patterns for various locations and compositions of Ge. Thus, Fig. 1(a) was obtained with the electron beam positioned in the center of a 5Ge epilayer and the distortion is consistent with an orthorhombic distortion. When the beam is situated at about 150 nm from the interface, the same part of the CBED pattern is shown in Fig. 1(b); clearly, the symmetry exhibited by the mirror planes in Fig. 1 is broken. Finally, when the electron beam is positioned in the center of a 10Ge epilayer, the CBED pattern yields the result shown in Fig. 1(c). In this case, the break in the mirror symmetry is independent of distance form the heterointerface, as might be expected from the increase in the mismatch between 5 and 10%Ge, i.e. 0.2 to 0.4%, respectively. From computer simulation, Fig.2, the apparent monocline distortion corresponding to the 5Ge epilayer is quantified as a100 = 0.5443 nm, a010 = 0.5429 nm and a001 = 0.5440 nm (all ± 0.0001 nm), and α = β = 90°, γ = 89.96 ± 0.02°. These local symmetry changes are most likely due to surface relaxation phenomena.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 928
Author(s):  
Yong Du ◽  
Zhenzhen Kong ◽  
Muhammet Toprak ◽  
Guilei Wang ◽  
Yuanhao Miao ◽  
...  

This work presents the growth of high-quality Ge epilayers on Si (001) substrates using a reduced pressure chemical vapor deposition (RPCVD) chamber. Based on the initial nucleation, a low temperature high temperature (LT-HT) two-step approach, we systematically investigate the nucleation time and surface topography, influence of a LT-Ge buffer layer thickness, a HT-Ge growth temperature, layer thickness, and high temperature thermal treatment on the morphological and crystalline quality of the Ge epilayers. It is also a unique study in the initial growth of Ge epitaxy; the start point of the experiments includes Stranski–Krastanov mode in which the Ge wet layer is initially formed and later the growth is developed to form nuclides. Afterwards, a two-dimensional Ge layer is formed from the coalescing of the nuclides. The evolution of the strain from the beginning stage of the growth up to the full Ge layer has been investigated. Material characterization results show that Ge epilayer with 400 nm LT-Ge buffer layer features at least the root mean square (RMS) value and it’s threading dislocation density (TDD) decreases by a factor of 2. In view of the 400 nm LT-Ge buffer layer, the 1000 nm Ge epilayer with HT-Ge growth temperature of 650 °C showed the best material quality, which is conducive to the merging of the crystals into a connected structure eventually forming a continuous and two-dimensional film. After increasing the thickness of Ge layer from 900 nm to 2000 nm, Ge surface roughness decreased first and then increased slowly (the RMS value for 1400 nm Ge layer was 0.81 nm). Finally, a high-temperature annealing process was carried out and high-quality Ge layer was obtained (TDD=2.78 × 107 cm−2). In addition, room temperature strong photoluminescence (PL) peak intensity and narrow full width at half maximum (11 meV) spectra further confirm the high crystalline quality of the Ge layer manufactured by this optimized process. This work highlights the inducing, increasing, and relaxing of the strain in the Ge buffer and the signature of the defect formation.


1998 ◽  
Author(s):  
Mei Li ◽  
Xueqian Li ◽  
Xiaowei Song ◽  
Zhongjiu Ge ◽  
Xingde Zhang

Sign in / Sign up

Export Citation Format

Share Document