Amorphous phase formation by solid‐state reaction between polycrystalline Co thin films and single‐crystal GaAs

1989 ◽  
Vol 55 (15) ◽  
pp. 1510-1512 ◽  
Author(s):  
F. Y. Shiau ◽  
Y. A. Chang
1986 ◽  
Vol 1 (6) ◽  
pp. 774-780 ◽  
Author(s):  
A.M. Vredenberg ◽  
J.F.M. Westendorp ◽  
F.W. Saris ◽  
N.M. van der Pers ◽  
Th.H. de Keijser

1986 ◽  
Vol 1 (1) ◽  
pp. 38-46 ◽  
Author(s):  
N. Saunders ◽  
A. P. Miodownik

The glass-forming ability of the three alloy systems Co–Zr, Cu–Zr, and Ni–Zr has been analyzed for three distinct production routes: (1) liquid quenching, (2) vapor deposition, and (3) solidstate reaction. Using the free energy and heats of formation curves obtained from the thermodynamic characterization of the respective alloy systems, a satisfactory rationale can be obtained for amorphous phase formation by all three routes. The analysis shows that while amorphous phase formation by quenching from the high-temperature liquid is clearly dependent on factors such as quench rate and the value TG/TM, it is the low-temperature stability of the amorphous phase relative to the other crystalline structures that enables amorphous phases to be formed by both vapor deposition and solid-state reaction. The underlying free energy curves indicate the interesting possibility of a supersaturation sequence in the nucleation of an amorphous phase by solid-state reaction. The principles underlying thermodynamic characterizations are briefly discussed, and a characterization for Co–Zr is presented.


1990 ◽  
Vol 39 (7) ◽  
pp. 101
Author(s):  
LIU WEN-HONG ◽  
ZHU DE-ZHANG ◽  
WANG ZHEN-XIA ◽  
LIU XIANG-HUAI

JOM ◽  
2021 ◽  
Author(s):  
Evgeny T. Moiseenko ◽  
Sergey M. Zharkov ◽  
Roman R. Altunin ◽  
Oleg V. Belousov ◽  
Leonid A. Solovyov ◽  
...  

JOM ◽  
2021 ◽  
Author(s):  
Evgeny T. Moiseenko ◽  
Sergey M. Zharkov ◽  
Roman R. Altunin ◽  
Oleg V. Belousov ◽  
Leonid A. Solovyov ◽  
...  

Author(s):  
Dae-Hong Ko ◽  
Robert Sinclair

It is now well known that many metals form a l-2nm amorphous interdiffused layer when deposited onto clean Si surface, which grows upon annealing in some systems but crystallizes into stable, or metastable, phases in others. Such behavior can be interpreted in terms of a solid-state amorphization, driven by a negative heat of mixing of the elements with the amorphous phase produced for kinetic reasons. Some metal/compound semiconductor systems also show the same reaction behavior. Though there have been some reports, using electron diffraction, on the amorphous phase formation at metal-compound semiconductor interface upon low temperature annealing, because the expected thickness might only be several atomic layers, it is clear that high resolution transmission electron microscopy (HRTEM) is the most powerful technique to study such a phase. This article reports on the amorphous phase formation and the initial stages of reaction occuring at Pt/GaAs interfaces upon annealing with HRTEM, and this is the most direct demonstration of solid state amorphization of a metal with a compound semiconductor.


2012 ◽  
Vol 706-709 ◽  
pp. 2857-2862 ◽  
Author(s):  
Koen De Keyser ◽  
Christophe Detavernier ◽  
Jean Jordan Sweet ◽  
Christian Lavoie

The texture of thin films, originating from a solid state reaction between a deposited film and a single crystal substrate is investigated. The relation between the phase formation and texture is analyzed for a number of these systems, such as Co/Si, Ni/Si or Co/Ge, where a metal film is allowed to react with a semiconductor single crystal substrate during heating and a summary of these results in presented in this article. It was found that the texture of the resulting films can be very complex, consisting of a variety of simultaneously occurring texture components such as epitaxy, fiber and axiotaxy texture. The close connection between the phase formation and texture is demonstrated by the fact that even a small intervention in either one, can have a huge effect on the resulting phase and/or its texture. From this, we show that the effect of the addition of ternary elements (e.g. Pt, W, C) to the thin films can only be understood if one considers its effects on both the kinetics and the thermodynamics of the reactions, as well as on the texture of the phases. We show how this can be used to influence technologically important properties of the films, such of formation temperature or stability.


Sign in / Sign up

Export Citation Format

Share Document