Recent progress in high-energy, high-resolution x-ray imaging techniques for application to the National Ignition Facility (invited)

1999 ◽  
Vol 70 (1) ◽  
pp. 525-529 ◽  
Author(s):  
J. A. Koch ◽  
O. L. Landen ◽  
B. A. Hammel ◽  
C. Brown ◽  
J. Seely ◽  
...  
2013 ◽  
Vol 25 (12) ◽  
pp. 3119-3122 ◽  
Author(s):  
陈伯伦 Chen Bolun ◽  
杨正华 Yang Zhenghua ◽  
韦敏习 Wei Minxi ◽  
邓博 Deng Bo ◽  
苏明 Su Ming ◽  
...  

AIP Advances ◽  
2017 ◽  
Vol 7 (10) ◽  
pp. 105122
Author(s):  
Masato Hoshino ◽  
Kentaro Uesugi ◽  
Ryuji Shikaku ◽  
Naoto Yagi

2014 ◽  
Vol 898 ◽  
pp. 614-617
Author(s):  
Rui Hong Li ◽  
Yue Ping Han

The present paper reviews the X-ray grating imaging systems at home and abroad from the aspects of technological characterizations and the newest researching focus. First, not only the imaging principles and the frameworks of the typical X-ray grating imaging system based on Talbot-Lau interferometry method, but also the algorithms of retrieving the signals of attenuation, refraction and small-angle scattering are introduced. Second, the system optimizing methods are discussed, which involves mainly the relaxing the requirement of high positioning resolution and strict circumstances for gratings and designing large field of view with high resolution. Third, two and four-dimensional grating-based X-ray imaging techniques are introduced.


2014 ◽  
Vol 28 ◽  
pp. 1460162 ◽  
Author(s):  
NICCOLÒ BUCCIANTINI

Pulsar Wind Nebulae (PWNe) are ideal astrophysical laboratories where high energy relativistic phenomena can be investigated. They are close, well resolved in our observations, and the knowledge derived in their study has a strong impact in many other fields, from AGNs to GRBs. Yet there are still unresolved issues, that prevent us from a full clear understanding of these objects. The lucky combination of high resolution X-ray imaging and numerical codes to handle the outflow and dynamical properties of relativistic MHD, has opened a new avenue of investigation that has lead to interesting progresses in the last years. Despite all of this, we do not understand yet how particles are accelerated, and the functioning of the pulsar wind and pulsar magnetosphere, that power PWNe. I will review what is now commonly known as the MHD paradigm, and in particular I will focus on various approaches that have been and are currently used to model these systems. For each I will highlight its advantages, limitations, and degree of applicability.


2008 ◽  
Vol 100 (5) ◽  
pp. 2966-2976 ◽  
Author(s):  
David D. Cox ◽  
Alexander M. Papanastassiou ◽  
Daniel Oreper ◽  
Benjamin B. Andken ◽  
James J. DiCarlo

Much of our knowledge of brain function has been gleaned from studies using microelectrodes to characterize the response properties of individual neurons in vivo. However, because it is difficult to accurately determine the location of a microelectrode tip within the brain, it is impossible to systematically map the fine three-dimensional spatial organization of many brain areas, especially in deep structures. Here, we present a practical method based on digital stereo microfocal X-ray imaging that makes it possible to estimate the three-dimensional position of each and every microelectrode recording site in “real time” during experimental sessions. We determined the system's ex vivo localization accuracy to be better than 50 μm, and we show how we have used this method to coregister hundreds of deep-brain microelectrode recordings in monkeys to a common frame of reference with median error of <150 μm. We further show how we can coregister those sites with magnetic resonance images (MRIs), allowing for comparison with anatomy, and laying the groundwork for more detailed electrophysiology/functional MRI comparison. Minimally, this method allows one to marry the single-cell specificity of microelectrode recording with the spatial mapping abilities of imaging techniques; furthermore, it has the potential of yielding fundamentally new kinds of high-resolution maps of brain function.


2021 ◽  
Vol 118 (25) ◽  
pp. e2103126118
Author(s):  
Guibin Zan ◽  
Sheraz Gul ◽  
Jin Zhang ◽  
Wei Zhao ◽  
Sylvia Lewis ◽  
...  

Multicontrast X-ray imaging with high resolution and sensitivity using Talbot–Lau interferometry (TLI) offers unique imaging capabilities that are important to a wide range of applications, including the study of morphological features with different physical properties in biological specimens. The conventional X-ray TLI approach relies on an absorption grating to create an array of micrometer-sized X-ray sources, posing numerous limitations, including technical challenges associated with grating fabrication for high-energy operations. We overcome these limitations by developing a TLI system with a microarray anode–structured target (MAAST) source. The MAAST features an array of precisely controlled microstructured metal inserts embedded in a diamond substrate. Using this TLI system, tomography of a Drum fish tooth with high resolution and tri-contrast (absorption, phase, and scattering) reveals useful complementary structural information that is inaccessible otherwise. The results highlight the exceptional capability of high-resolution multicontrast X-ray tomography empowered by the MAAST-based TLI method in biomedical applications.


2008 ◽  
Vol 79 (10) ◽  
pp. 10E905 ◽  
Author(s):  
J. Workman ◽  
J. Cobble ◽  
K. Flippo ◽  
D. C. Gautier ◽  
S. Letzring

2022 ◽  
Author(s):  
Lu Lu ◽  
Mingzi Sun ◽  
Tong Wu ◽  
Qiuyang Lu ◽  
Baian Chen ◽  
...  

With super strong penetrability, high-energy X-rays can be applied to probe the inner structure of target objects under nondestructive situations. Scintillation materials can down-convert X-rays into visible light, enabling the...


Sign in / Sign up

Export Citation Format

Share Document