scholarly journals PULSAR WIND NEBULAE MODELING

2014 ◽  
Vol 28 ◽  
pp. 1460162 ◽  
Author(s):  
NICCOLÒ BUCCIANTINI

Pulsar Wind Nebulae (PWNe) are ideal astrophysical laboratories where high energy relativistic phenomena can be investigated. They are close, well resolved in our observations, and the knowledge derived in their study has a strong impact in many other fields, from AGNs to GRBs. Yet there are still unresolved issues, that prevent us from a full clear understanding of these objects. The lucky combination of high resolution X-ray imaging and numerical codes to handle the outflow and dynamical properties of relativistic MHD, has opened a new avenue of investigation that has lead to interesting progresses in the last years. Despite all of this, we do not understand yet how particles are accelerated, and the functioning of the pulsar wind and pulsar magnetosphere, that power PWNe. I will review what is now commonly known as the MHD paradigm, and in particular I will focus on various approaches that have been and are currently used to model these systems. For each I will highlight its advantages, limitations, and degree of applicability.

2014 ◽  
Vol 793 (2) ◽  
pp. 90 ◽  
Author(s):  
Hongjun An ◽  
Kristin K. Madsen ◽  
Stephen P. Reynolds ◽  
Victoria M. Kaspi ◽  
Fiona A. Harrison ◽  
...  

AIP Advances ◽  
2017 ◽  
Vol 7 (10) ◽  
pp. 105122
Author(s):  
Masato Hoshino ◽  
Kentaro Uesugi ◽  
Ryuji Shikaku ◽  
Naoto Yagi

2020 ◽  
Vol 644 ◽  
pp. L4
Author(s):  
P. Bordas ◽  
X. Zhang

Pulsar wind nebulae (PWNe) produced from supersonic runaway pulsars can render extended X-ray structures in the form of tails and prominent jets. In this Letter, we report on the analysis of ∼130 ks observations of the PWN around PSR J1135–6055 that were obtained with the Chandra satellite. The system displays bipolar jet-like structures of uncertain origin, a compact nebula around the pulsar likely formed by the bow shock ahead of it, and a trailing tail produced by the pulsar fast proper motion. The spectral and morphological properties of these structures reveal strong similarities with the PWNe in other runaway pulsars, such as PSR J1509–5850 and Geminga. We discuss their physical origin considering both canonical PWN and jet formation models as well as alternative scenarios that can also yield extended jet-like features following the escape of high-energy particles into the ambient magnetic field.


2021 ◽  
Vol 118 (25) ◽  
pp. e2103126118
Author(s):  
Guibin Zan ◽  
Sheraz Gul ◽  
Jin Zhang ◽  
Wei Zhao ◽  
Sylvia Lewis ◽  
...  

Multicontrast X-ray imaging with high resolution and sensitivity using Talbot–Lau interferometry (TLI) offers unique imaging capabilities that are important to a wide range of applications, including the study of morphological features with different physical properties in biological specimens. The conventional X-ray TLI approach relies on an absorption grating to create an array of micrometer-sized X-ray sources, posing numerous limitations, including technical challenges associated with grating fabrication for high-energy operations. We overcome these limitations by developing a TLI system with a microarray anode–structured target (MAAST) source. The MAAST features an array of precisely controlled microstructured metal inserts embedded in a diamond substrate. Using this TLI system, tomography of a Drum fish tooth with high resolution and tri-contrast (absorption, phase, and scattering) reveals useful complementary structural information that is inaccessible otherwise. The results highlight the exceptional capability of high-resolution multicontrast X-ray tomography empowered by the MAAST-based TLI method in biomedical applications.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012020
Author(s):  
K P Levenfish ◽  
G A Ponomaryov ◽  
A E Petrov ◽  
A M Bykov ◽  
A M Krassilchtchikov

Abstract We show that even the slow (subsonic) motion of pulsar wind nebulae (PWNe) relative to an ambient matter has a significant impact on their observables. The motion changes the appearance of nebulae on X-ray images, comparing to what would be observed for a nebula at rest. Accounting for the relative motion is necessary to avoid misinterpretation of the structure of the nebulae when analyzing their X-ray morphology. The motion also introduces some extra time scales in variability of non-thermal high-energy emission of PWNe and allows to reproduce a number of their structures that are not explained by stationary nebula models.


2018 ◽  
Vol 609 ◽  
pp. A110 ◽  
Author(s):  
Bo-Tao Zhu ◽  
Li Zhang ◽  
Jun Fang

Aims. The nonthermal radiative properties of 18 pulsar wind nebulae (PWNe) are studied in the 1D leptonic model. Methods. The dynamical and radiative evolution of a PWN in a nonradiative supernova remnant are self-consistently investigated in this model. The leptons (electrons/positrons) are injected with a broken power-law form, and nonthermal emission from a PWN is mainly produced by time-dependent relativistic leptons through synchrotron radiation and inverse Compton process. Results. Observed spectral energy distributions (SEDs) of all 18 PWNe are reproduced well, where the indexes of low-energy electron components lie in the range of 1.0–1.8 and those of high-energy electron components in the range of 2.1–3.1. Our results show that FX/Fγ > 10 for young PWNe; 1 <FX/Fγ ≤ 10 for evolved PWNe, except for G292.0+1.8; and FX/Fγ ≤ 1 for mature/old PWNe, except for CTA 1. Moreover, most PWNe are particle-dominated. Statistical analysis for the sample of 14 PWNe further indicate that (1) not all pulsar parameters have correlations with electron injection parameters, but electron maximum energy and PWN magnetic field correlate with the magnetic field at the light cylinder, the potential difference at the polar cap, and the spin-down power; (2) the spin-down power positively correlates with radio, X-ray, bolometric, and synchrotron luminosities, but does not correlate with gamma-ray luminosity; (3) the spin-down power positively correlates with radio, X-ray, and γ-band surface brightness; and (4) the PWN radius and the PWN age negatively correlate with X-ray luminosity, the ratio of X-ray to gamma-ray luminosities, and the synchrotron luminosity.


2019 ◽  
Vol 490 (3) ◽  
pp. 3608-3615 ◽  
Author(s):  
B Olmi ◽  
N Bucciantini

ABSTRACT Bow shock pulsar wind nebulae are a large class of non-thermal synchrotron sources associated to old pulsars that have emerged from their parent supernova remnant and are directly interacting with the interstellar medium. Within this class a few objects show extended X-ray features, generally referred as ‘jets’, that defies all the expectations from the canonical MHD models, being strongly misaligned respect to the pulsar direction of motion. It has been suggested that these jets might originate from high energy particles that escape from the system. Here we investigate this possibility, computing particle trajectories on top of a 3D relativistic MHD model of the flow and magnetic field structure, and we show not only that beamed escape is possible, but that it can easily be asymmetric and charge separated, which as we will discuss are important aspects to explain known objects.


2008 ◽  
Vol 79 (10) ◽  
pp. 10E905 ◽  
Author(s):  
J. Workman ◽  
J. Cobble ◽  
K. Flippo ◽  
D. C. Gautier ◽  
S. Letzring

2012 ◽  
Vol 8 (S291) ◽  
pp. 483-485 ◽  
Author(s):  
Samar Safi-Harb ◽  
Gilles Ferrand ◽  
Heather Matheson

AbstractMotivated by the wealth of past, existing, and upcoming X-ray and gamma-ray missions, we have developed the first public database of high-energy observations of all known Galactic Supernova Remnants (SNRs): http://www.physics.umanitoba.ca/snr/SNRcat. The catalogue links to, and complements, other existing related catalogues, including Dave Green's radio SNRs catalogue. We here highlight the features of the high-energy catalogue, including allowing users to filter or sort data for various purposes. The catalogue is currently targeted to Galactic SNR observations with X-ray and gamma-ray missions, and is timely with the upcoming launch of X-ray missions (including Astro-H in 2014). We are currently developing the existing database to include an up-to-date Pulsar Wind Nebulae (PWNe)-dedicated webpage, with the goal to provide a global view of PWNe and their associated neutron stars/pulsars. This extensive database will be useful to both theorists to apply their models or design numerical simulations, and to observers to plan future observations or design new instruments. We welcome input and feedback from the SNR/PWN/neutron stars community.


2012 ◽  
Vol 8 (S291) ◽  
pp. 251-256 ◽  
Author(s):  
Samar Safi-Harb

AbstractThe 1968 discovery of the Crab and Vela pulsars in their respective supernova remnants (SNRs) confirmed Baade and Zwicky's 1934 prediction that supernovae form neutron stars. Observations of Pulsar Wind Nebulae (PWNe), particularly with the Chandra X-ray Observatory, have in the past decade opened a new window to focus on the neutron stars' relativistic winds, study their interaction with their hosting SNRs, and find previously missed pulsars. While the Crab has been thought for decades to represent the prototype of PWNe, we now know of different classes of neutron stars and PWNe whose properties differ from the Crab. In this talk, I review the current status of neutron stars/PWNe-SNRs associations, and highlight the growing diversity of PWNe with an X-ray eye on their association with highly magnetized neutron stars. I conclude with an outlook to future high-energy studies.


Sign in / Sign up

Export Citation Format

Share Document