Photoluminescence, deep level transient spectroscopy and transmission electron microscopy measurements on MeV self-ion implanted and annealed n-type silicon

2000 ◽  
Vol 88 (5) ◽  
pp. 2309-2317 ◽  
Author(s):  
D. C. Schmidt ◽  
B. G. Svensson ◽  
M. Seibt ◽  
C. Jagadish ◽  
G. Davies
2013 ◽  
Vol 205-206 ◽  
pp. 497-501
Author(s):  
Alexander A. Tonkikh ◽  
Victor Tapio Rangel-Kuoppa ◽  
Nikolay D. Zakharov ◽  
Wolfgang Jantsch ◽  
Peter Werner

We report on a specific defect, which may form during the growth of Stranski-Krastanov surfactant-mediated Ge/Si (100) islands. Transmission electron microscopy reveals that these loop-like defects are local and could be represented by a missing plane of Ge atoms inside some of Ge islands. This specific defect may generate an electrically active trap within the Si band gap at about 0.3 eV above the Si valence band edge. Deep level transient spectroscopy reveals that at least 1 % of Ge islands may include such defects.


2015 ◽  
Vol 242 ◽  
pp. 163-168 ◽  
Author(s):  
Ilia L. Kolevatov ◽  
Frank Herklotz ◽  
Viktor Bobal ◽  
Bengt Gunnar Svensson ◽  
Edouard V. Monakhov

The evolution of irradiation-induced and hydrogen-related defects in n-type silicon in the temperature range 0 – 300 °C has been studied by deep level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (MCTS). Implantation of a box-like profile of hydrogen was performed into the depletion region of a Schottky diode to undertake the DLTS and MCTS measurements. Proportionality between the formation of two hydrogen-related deep states and a decrease of the vacancy-oxygen center concentration was found together with the appearance of new hydrogen-related energy levels.


1997 ◽  
Vol 81 (3) ◽  
pp. 1126-1130 ◽  
Author(s):  
Manabu Ishimaru ◽  
Shinsuke Harada ◽  
Teruaki Motooka

2012 ◽  
Vol 9 (10-11) ◽  
pp. 1992-1995 ◽  
Author(s):  
C. K. Tang ◽  
L. Vines ◽  
B. G. Svensson ◽  
E. V. Monakhov

1993 ◽  
Vol 324 ◽  
Author(s):  
Yutaka Tokuda ◽  
Isao Katoh ◽  
Masayuki Katayama ◽  
Tadasi Hattori

AbstractElectron traps in Czochralski–grown n-type (100) silicon with and without donor annihilation annealing have been studied by deep–level transient spectroscopy. A total of eight electron traps are observed in the concentration range 1010 –1011 cm −3. It is thought that these are grown–in defects during crystal growth cooling period including donor annihilation annealing. It is suggested that two electron traps labelled A2 (Ec–0.34 eV) and A3 (Ec–0.38 eV) of these traps are correlated with oxygen–related defects. It is shown that traps A2 and A3 are formed around 400 ° C and disappear around 500–600 ° C.


Sign in / Sign up

Export Citation Format

Share Document