Mössbauer spectroscopic and x-ray diffraction studies of Fe/SiO[sub 2] nanocomposite soft magnetic materials

2002 ◽  
Vol 91 (10) ◽  
pp. 8198 ◽  
Author(s):  
D. P. Yang ◽  
Y. D. Zhang ◽  
S. Hui
2015 ◽  
Vol 117 (17) ◽  
pp. 17A333 ◽  
Author(s):  
R. Parsons ◽  
T. Yanai ◽  
H. Kishimoto ◽  
A. Kato ◽  
M. Ohnuma ◽  
...  

2021 ◽  
Vol 21 (4) ◽  
pp. 79-89
Author(s):  
Muhammed Fatih Kılıçaslan ◽  
Yasin Yılmaz ◽  
Bekir Akgül ◽  
Hakan Karataş ◽  
Can Doğan Vurdu

Abstract Alloys of FeNiSiB soft magnetic materials containing variable Fe and Ni contents (wt.%) have been produced by melt spinning method, a kind of rapid solidification technique. The magnetic and structural properties of FeNiSiB alloys with soft magnetic properties were investigated by increasing the Fe ratio. X-ray diffraction analysis and SEM images shows that the produced alloy ribbons generally have an amorphous structure, together with also partially nanocrystalline regions. It was observed that the structure became much more amorphous together with increasing Fe content in the composition. Among the alloy ribbons, the highest saturation magnetization was obtained as 0.6 emu/g in the specimen with 50 wt.% Fe. In addition, the highest Curie temperature was observed in the sample containing 46 wt.% Fe.


2014 ◽  
Vol 775-776 ◽  
pp. 415-420 ◽  
Author(s):  
Débora Albuquerque Vieira ◽  
Verônica Cristina Souza Diniz ◽  
Daniel R. Cornejo ◽  
Ana Cristina Figueiredo de Melo Costa ◽  
Ruth Herta Goldsmith Aliaga Kiminami

This work involved a study of the reproducibility of the process of combustion synthesis to produce Ni-Zn ferrites. The structural, morphological and magnetic characteristics of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and magnetometry using an alternating gradient magnetometer (AGM). The XRD diffractograms of the samples indicated that they are monophasic, crystalline, with crystallite sizes ranging from 21 to 38 nm, and have a homogeneous morphology consisting of agglomerates of spherical particles. The samples behaved as soft magnetic materials, with magnetization levels ranging from 37 to 47 emug-1. The combustion synthesis was found to be efficient in producing Ni-Zn nanoferrites, yielding reproducible results.


Author(s):  
Gereon Goldbeck ◽  
Gerd Bramerdorfer ◽  
Wolfgang Amrhein ◽  
Josef Hinterdorfer ◽  
Bernhard Weis

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4400
Author(s):  
Luca Ferraris ◽  
Fausto Franchini ◽  
Emir Pošković ◽  
Marco Actis Grande ◽  
Róbert Bidulský

In recent years, innovative magnetic materials have been introduced in the field of electrical machines. In the ambit of soft magnetic materials, laminated steels guarantee good robustness and high magnetic performance but, in some high-frequency applications, can be replaced by Soft Magnetic Composite (SMC) materials. SMC materials allow us to reduce the eddy currents and to design innovative 3D magnetic circuits. In general, SMCs are characterized at room temperature, but as electrical machines operate at high temperature (around 100 °C), an investigation analysis of the temperature effect has been carried out on these materials; in particular, three SMC samples with different binder percentages and process parameters have been considered for magnetic and energetic characterization.


Sign in / Sign up

Export Citation Format

Share Document